A Cooperative Coevolution Hyper-Heuristic Framework for Workflow Scheduling Problem

计算机科学 工作流程 启发式 超启发式 调度(生产过程) 启发式 机器学习 人工智能 分布式计算 数学优化 数据库 移动机器人 数学 机器人 操作系统 机器人学习
作者
Qin-zhe Xiao,Jinghui Zhong,Feng Lu,Linbo Luo,Jianming Lv
出处
期刊:IEEE Transactions on Services Computing [Institute of Electrical and Electronics Engineers]
卷期号:15 (1): 150-163 被引量:13
标识
DOI:10.1109/tsc.2019.2923912
摘要

Workflow scheduling problem (WSP) is a well-known combinatorial optimization problem, which is defined to assign a series of interconnected tasks to the available resources to meet user defined Quality of Service (QoS). The guided random search methods and heuristic based methods are two most common methods for solving WSP. However, these methods either require expensive computational cost or heavily rely on human's empirical knowledge, which makes them inconvenient for practical applications. Keeping this in mind, this paper proposes a cooperative coevolution hyper-heuristic framework to solve WSP with an objective of minimizing the completed time of workflow. In particular, in the proposed framework, two heuristic rules, namely, the task selection rule (TSR) and the resource selection rule (RSR), are learned automatically by a cooperative coevolution genetic programming (CCGP) algorithm. The TSR is used to select a ready task for scheduling, while the RSR is used to allocate resources to perform the selected task. To improve the search efficiency, a set of low-level heuristics are defined and used as building blocks to construct the TSR and RSR. Further, to validate the effectiveness of the proposed framework, randomly generated workflow instances and four real-world workflows are used as test cases in the experimental study. Compared with several state-of-the-art methods, e.g., the Heterogeneous Earliest Finish Time (HEFT) and the Predict Earliest Finish Time (PEFT), the high-level heuristics found by our proposed framework demonstrate superior performance on all the test cases in terms of several metrics including the schedule length ratio, speedup and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
若尘完成签到,获得积分10
2秒前
上官若男应助嘻嘻采纳,获得30
2秒前
Siriluck完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
5秒前
6秒前
6秒前
sxx完成签到,获得积分10
7秒前
彩色忆雪发布了新的文献求助10
8秒前
8秒前
完美世界应助如意草丛采纳,获得10
9秒前
洁净思萱完成签到,获得积分10
9秒前
香蕉完成签到,获得积分10
10秒前
10秒前
梦之凌云完成签到,获得积分0
10秒前
星辰大海应助彩色忆雪采纳,获得10
11秒前
洁净思萱发布了新的文献求助10
12秒前
苗松发布了新的文献求助10
12秒前
秀丽的艳血完成签到,获得积分20
12秒前
lele033086发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
甜美冥茗完成签到 ,获得积分10
14秒前
橙子完成签到,获得积分10
14秒前
15秒前
一一应助有魅力的从凝采纳,获得10
15秒前
15秒前
jcm发布了新的文献求助10
16秒前
17秒前
小二郎应助yyy采纳,获得10
18秒前
傲娇的笑白完成签到 ,获得积分10
18秒前
如意草丛发布了新的文献求助10
18秒前
19秒前
如意的尔蝶完成签到,获得积分10
20秒前
仙哥发布了新的文献求助10
20秒前
20秒前
嘻嘻发布了新的文献求助30
20秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799266
求助须知:如何正确求助?哪些是违规求助? 3344916
关于积分的说明 10322625
捐赠科研通 3061423
什么是DOI,文献DOI怎么找? 1680315
邀请新用户注册赠送积分活动 806970
科研通“疑难数据库(出版商)”最低求助积分说明 763451