亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Providing Bionic Glycome as internal standards by glycan reducing and isotope labeling for reliable and simple quantitation of N-glycome based on MALDI- MS

糖组 化学 聚糖 色谱法 简单(哲学) 生物化学 糖蛋白 认识论 哲学
作者
Wenjun Qin,Zejian Zhang,Ruihuan Qin,Jing Han,Ran Zhao,Yong Gu,Yiqing Pan,Jianxin Gu,Shifang Ren
出处
期刊:Analytica Chimica Acta [Elsevier BV]
卷期号:1081: 112-119 被引量:13
标识
DOI:10.1016/j.aca.2019.07.003
摘要

Accurate, simple and economical methods for quantifying N-glycans are continuously required for discovering disease biomarkers and quality control of biopharmaceuticals. Quantitative N-glycomics based on MS using exogenous isotopic labeling internal standards is promising as it is simple and accurate. However, it is largely hampered by the lack of available glycan internal standard libraries with good coverage of the natural glycan structural heterogeneity as well as broad dynamic mass and ion abundance range. To overcome this limitation, we developed a novel method, providing 'Bionic Glycome' as internal standards for glycan quantitation by MALDI-MS. Bionic Glycome was produced using N-glycome from pooled samples to be analyzed as substrate by one step of glycan reducing and isotope labeling (Glycan-RAIL). Each bionic glycan has 3 Da mass increment over its corresponding glycan analyte based on hemiacetals/alditols and H/D mass difference. In addition, Bionic Glycome has the same glycome composition and similar glycome profile in abundance with N-glycome to be analyzed from biological sample. Through the investigation of single glycan standard and complex glycans released from model glycoprotein and serum, the results demonstrate that the method has good quantitative accuracy and high reproducibility. Lastly, this method was successfully used for discovery of lung cancer specific glycan markers by comparing the serum glycans from each sample in lung cancer group (n = 16) and healthy controls (n = 16), indicating its potential in clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LXZ发布了新的文献求助10
6秒前
want_top_journal完成签到,获得积分10
6秒前
Easonzk关注了科研通微信公众号
24秒前
Easonzk关注了科研通微信公众号
25秒前
zoes完成签到 ,获得积分10
36秒前
皮皮虾完成签到 ,获得积分10
40秒前
高山流水完成签到,获得积分10
40秒前
shentaii完成签到,获得积分10
45秒前
Magali发布了新的文献求助50
52秒前
57秒前
wysiii发布了新的文献求助10
1分钟前
满意的伊完成签到,获得积分10
1分钟前
1分钟前
在水一方应助kalcspin采纳,获得10
1分钟前
1分钟前
1分钟前
JJ完成签到,获得积分10
1分钟前
重生之我在学校搞科研完成签到,获得积分10
1分钟前
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
上官若男应助叶潭采纳,获得10
1分钟前
zrm20020717发布了新的文献求助10
1分钟前
1分钟前
科研通AI5应助噜啦啦采纳,获得10
1分钟前
烟花应助激动的哈密瓜采纳,获得10
1分钟前
朴素的书琴完成签到,获得积分10
1分钟前
1分钟前
魔幻安南完成签到 ,获得积分10
1分钟前
1分钟前
激动的哈密瓜完成签到,获得积分10
1分钟前
1分钟前
叶潭发布了新的文献求助10
2分钟前
2分钟前
iorpi完成签到,获得积分10
2分钟前
2分钟前
Abdurrahman发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Beauty and Innovation in La Machine Chinoise: Falla, Debussy, Ravel, Roussel 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4805859
求助须知:如何正确求助?哪些是违规求助? 4121581
关于积分的说明 12752249
捐赠科研通 3855289
什么是DOI,文献DOI怎么找? 2122969
邀请新用户注册赠送积分活动 1145105
关于科研通互助平台的介绍 1036678