Variable-Length Particle Swarm Optimization for Feature Selection on High-Dimensional Classification

粒子群优化 特征选择 维数之咒 人工智能 局部最优 模式识别(心理学) 选择(遗传算法) 计算机科学 变量(数学) 特征(语言学) 代表(政治) 算法 数学 数学优化 数学分析 法学 哲学 政治 语言学 政治学
作者
Binh Tran,Bing Xue,Mengjie Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:23 (3): 473-487 被引量:245
标识
DOI:10.1109/tevc.2018.2869405
摘要

With a global search mechanism, particle swarm optimization (PSO) has shown promise in feature selection (FS). However, most of the current PSO-based FS methods use a fix-length representation, which is inflexible and limits the performance of PSO for FS. When applying these methods to high-dimensional data, it not only consumes a significant amount of memory but also requires a high computational cost. Overcoming this limitation enables PSO to work on data with much higher dimensionality which has become more and more popular with the advance of data collection technologies. In this paper, we propose the first variable-length PSO representation for FS, enabling particles to have different and shorter lengths, which defines smaller search space and therefore, improves the performance of PSO. By rearranging features in a descending order of their relevance, we facilitate particles with shorter lengths to achieve better classification performance. Furthermore, using the proposed length changing mechanism, PSO can jump out of local optima, further narrow the search space and focus its search on smaller and more fruitful area. These strategies enable PSO to reach better solutions in a shorter time. Results on ten high-dimensional datasets with varying difficulties show that the proposed variable-length PSO can achieve much smaller feature subsets with significantly higher classification performance in much shorter time than the fixed-length PSO methods. The proposed method also outperformed the compared non-PSO FS methods in most cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
充电宝应助李嘉乐采纳,获得10
2秒前
霹雳侠发布了新的文献求助10
2秒前
科研通AI5应助健忘冰露采纳,获得10
3秒前
Jamie发布了新的文献求助10
3秒前
3秒前
于浩洋发布了新的文献求助10
4秒前
赘婿应助麦当劳薯条采纳,获得10
4秒前
4秒前
5秒前
深情依霜完成签到,获得积分10
6秒前
6秒前
轩辕幻香完成签到,获得积分10
6秒前
dochx完成签到,获得积分10
7秒前
7秒前
大个应助科研通管家采纳,获得10
8秒前
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
8秒前
落寞以寒发布了新的文献求助10
10秒前
小马甲应助Jamie采纳,获得10
10秒前
小黄发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
12秒前
Ava应助ssssss采纳,获得30
13秒前
李大锤完成签到,获得积分10
14秒前
852应助cherish采纳,获得10
15秒前
16秒前
轩辕幻香发布了新的文献求助10
16秒前
椋鸟应助开放灭绝采纳,获得10
19秒前
搜集达人应助诗轩采纳,获得10
20秒前
Hello应助不是一只杨采纳,获得10
20秒前
20秒前
明理宛秋完成签到 ,获得积分10
20秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806839
求助须知:如何正确求助?哪些是违规求助? 3351587
关于积分的说明 10354846
捐赠科研通 3067401
什么是DOI,文献DOI怎么找? 1684517
邀请新用户注册赠送积分活动 809780
科研通“疑难数据库(出版商)”最低求助积分说明 765635