Spectrometer-Driven Spectral Partitioning for Hyperspectral Image Classification

高光谱成像 计算机科学 人工智能 成像光谱仪 模式识别(心理学) 遥感 端元 多光谱图像 光谱分辨率 光谱带 全光谱成像 成像光谱学 像素 光谱特征 化学成像
作者
Yi Liu,Jun Li,Antonio Plaza
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 668-680 被引量:8
标识
DOI:10.1109/jstars.2015.2437614
摘要

Classification is an important and widely used technique for remotely sensed hyperspectral data interpretation. Although most techniques developed for hyperspectral image classification assume that the spectral signatures provided by an imaging spectrometer can be interpreted as a unique and continuous signal, in practice, this signal may be obtained after the combination of several individual responses obtained from different spectrometers. In this work, we propose a new spectral partitioning strategy prior to classification which takes into account the physical design of the imaging spectrometer system for partitioning the spectral bands collected by each spectrometer, and resampling them into different groups or partitions. The final classification result is obtained as a combination of the results obtained from each individual partition by means of a multiple classifier system (MCS). The proposed strategy not only incorporates the design of the imaging spectrometer into the classification process but also circumvents problems such as the curse of dimensionality given by the unbalance between the high number of spectral bands and the generally limited number of training samples available for classification purposes. This concept is illustrated in this work using two different imaging spectrometers: the airborne visible infra-red imaging spectrometer, operated by NASA, and the digital airborne imaging system (DAIS), operated by the German Aerospace Center. Our experiments indicate that the proposed spectral partitioning strategy can lead to classification improvements on the order of 5% overall accuracy when using state-of-the-art spatial-spectral classifiers with very limited training samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_VZG7GZ应助乐陶采纳,获得10
刚刚
义气的钥匙完成签到,获得积分10
刚刚
莫泊桑完成签到,获得积分10
刚刚
白betty完成签到,获得积分10
刚刚
Aria完成签到,获得积分10
1秒前
1秒前
鸡爪完成签到,获得积分10
2秒前
2秒前
深情安青应助情殇采纳,获得10
2秒前
HBY发布了新的文献求助10
3秒前
3秒前
haha发布了新的文献求助30
3秒前
zrx完成签到,获得积分10
3秒前
adam发布了新的文献求助10
3秒前
MN1发布了新的文献求助10
3秒前
管锦发布了新的文献求助10
4秒前
4秒前
国服懒羊羊完成签到,获得积分10
4秒前
上官若男应助幸运采纳,获得10
4秒前
sunshine完成签到 ,获得积分20
5秒前
zgq完成签到,获得积分10
5秒前
zrx发布了新的文献求助10
6秒前
科研通AI5应助Eason小川采纳,获得10
6秒前
酷波er应助明亮的翠风采纳,获得10
7秒前
8秒前
8秒前
7799发布了新的文献求助10
8秒前
Jasper应助lql采纳,获得10
9秒前
dddsss完成签到,获得积分10
10秒前
我讨厌文献综述完成签到 ,获得积分10
10秒前
bzdjsmw完成签到 ,获得积分10
10秒前
11秒前
华仔应助八九采纳,获得10
11秒前
shanshui完成签到,获得积分10
12秒前
gjw发布了新的文献求助10
12秒前
12秒前
852应助王景采纳,获得10
13秒前
smiling完成签到 ,获得积分10
13秒前
求知完成签到 ,获得积分10
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
On translated images, stereotypes and disciplines 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834344
求助须知:如何正确求助?哪些是违规求助? 3376864
关于积分的说明 10495644
捐赠科研通 3096375
什么是DOI,文献DOI怎么找? 1704930
邀请新用户注册赠送积分活动 820309
科研通“疑难数据库(出版商)”最低求助积分说明 771966