已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning based image recognition for crack and leakage defects of metro shield tunnel

泄漏(经济) 人工智能 分割 计算机科学 阈值 护盾 推论 深度学习 图像(数学) 计算机视觉 模式识别(心理学) 工程类 结构工程 地质学 岩石学 经济 宏观经济学
作者
Hongwei Huang,Qing-tong Li,Dongming Zhang
出处
期刊:Tunnelling and Underground Space Technology [Elsevier BV]
卷期号:77: 166-176 被引量:424
标识
DOI:10.1016/j.tust.2018.04.002
摘要

The performance of traditional visual inspection by handcrafted features for crack and leakage defects of metro shield tunnel is hardly satisfactory nowadays because it is low-efficient to distinguish defects from some interference such as segmental joints, bolt holes, cables and manual marks. Based on deep learning (DL), this paper proposes a novel image recognition algorithm for semantic segmentation of crack and leakage defects of metro shield tunnel using hierarchies of features extracted by fully convolutional network (FCN). The defect images in training dataset and testing dataset are captured via a self-developed image acquisition equipment named Moving Tunnel Inspection (MTI-200a). After the establishment of image datasets, FCN models of crack and leakage are separately trained through several iterations of forward inference and backward learning. Semantic segmentation of defect images is implemented via the corresponding FCN models using two-stream algorithm, i.e. one stream is used to recognize the crack by sliding-window-assembling operation and the other is adopted for the leakage by resizing-interpolation operation. Compared with two frequently-used traditional methods, i.e. region growing algorithm (RGA) and adaptive thresholding algorithm (ATA), great superiority of the proposed method in terms of recognition results, inference time and error rates is shown based on four typical types of defect images which are crack-only image, leakage-only image, two-defect-nonoverlapping (TDN) image, two-defect-overlapping (TDO) image. The proposed method using DL can be employed to rapidly and accurately recognize defects for structure health monitoring and maintenance of metro shield tunnels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
叶95完成签到 ,获得积分10
1秒前
橘子树完成签到 ,获得积分10
2秒前
打打应助luxiaoyu采纳,获得10
6秒前
8秒前
心灵美绝施完成签到 ,获得积分10
9秒前
JW2071367完成签到,获得积分10
9秒前
番茄黄瓜芝士片完成签到 ,获得积分10
9秒前
14秒前
碧蓝皮卡丘完成签到,获得积分10
15秒前
李爱国应助洵洵采纳,获得10
15秒前
15秒前
lj-TJUT完成签到 ,获得积分10
17秒前
17秒前
谨慎采白完成签到 ,获得积分10
17秒前
luxiaoyu发布了新的文献求助10
19秒前
贾舒涵发布了新的文献求助10
21秒前
单身的青柏完成签到 ,获得积分10
24秒前
27秒前
29秒前
yeah发布了新的文献求助10
30秒前
千寻发布了新的文献求助10
36秒前
oleskarabach发布了新的文献求助10
37秒前
51秒前
51秒前
浮游应助oleskarabach采纳,获得10
1分钟前
浮游应助oleskarabach采纳,获得10
1分钟前
1分钟前
庾稀完成签到,获得积分20
1分钟前
Yuki完成签到 ,获得积分10
1分钟前
风华正茂完成签到,获得积分10
1分钟前
Yy完成签到 ,获得积分10
1分钟前
若水完成签到,获得积分10
1分钟前
缪雨阳完成签到,获得积分10
1分钟前
cdc完成签到 ,获得积分10
1分钟前
1分钟前
馆长应助缪雨阳采纳,获得30
1分钟前
天亮了完成签到,获得积分10
1分钟前
宝玉完成签到 ,获得积分10
1分钟前
FartKing完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4552510
求助须知:如何正确求助?哪些是违规求助? 3981779
关于积分的说明 12327604
捐赠科研通 3651430
什么是DOI,文献DOI怎么找? 2011147
邀请新用户注册赠送积分活动 1046210
科研通“疑难数据库(出版商)”最低求助积分说明 934787