亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning To Predict Cell-Penetrating Peptides for Antisense Delivery

计算机科学 人工智能 计算生物学 细胞穿透肽 机器学习 纳米技术 化学 细胞 生物 生物化学 材料科学
作者
Justin M. Wolfe,Colin M. Fadzen,Zi-Ning Choo,Rebecca L. Holden,Monica Yao,Gunnar J. Hanson,Bradley L. Pentelute
出处
期刊:ACS central science [American Chemical Society]
卷期号:4 (4): 512-520 被引量:76
标识
DOI:10.1021/acscentsci.8b00098
摘要

Cell-penetrating peptides (CPPs) can facilitate the intracellular delivery of large therapeutically relevant molecules, including proteins and oligonucleotides. Although hundreds of CPP sequences are described in the literature, predicting efficacious sequences remains difficult. Here, we focus specifically on predicting CPPs for the delivery of phosphorodiamidate morpholino oligonucleotides (PMOs), a compelling type of antisense therapeutic that has recently been FDA approved for the treatment of Duchenne muscular dystrophy. Using literature CPP sequences, 64 covalent PMO-CPP conjugates were synthesized and evaluated in a fluorescence-based reporter assay for PMO activity. Significant discrepancies were observed between the sequences that performed well in this assay and the sequences that performed well when conjugated to only a small-molecule fluorophore. As a result, we envisioned that our PMO-CPP library would be a useful training set for a computational model to predict CPPs for PMO delivery. We used the PMO activity data to fit a random decision forest classifier to predict whether or not covalent attachment of a given peptide would enhance PMO activity at least 3-fold. To validate the model experimentally, seven novel sequences were generated, synthesized, and tested in the fluorescence reporter assay. All computationally predicted positive sequences were positive in the assay, and one sequence performed better than 80% of the tested literature CPPs. These results demonstrate the power of machine learning algorithms to identify peptide sequences with particular functions and illustrate the importance of tailoring a CPP sequence to the cargo of interest.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
22秒前
33秒前
43秒前
52秒前
56秒前
1分钟前
1分钟前
在水一方应助qidian采纳,获得10
1分钟前
WilliamJarvis完成签到 ,获得积分10
2分钟前
开心的瘦子完成签到,获得积分10
2分钟前
可爱的函函应助kokoro采纳,获得30
2分钟前
2分钟前
2分钟前
CipherSage应助开心的瘦子采纳,获得10
2分钟前
Lucky.完成签到 ,获得积分0
2分钟前
大模型应助科研通管家采纳,获得10
3分钟前
3分钟前
kokoro完成签到,获得积分20
3分钟前
kokoro发布了新的文献求助30
3分钟前
堪冷之发布了新的文献求助10
3分钟前
bji完成签到,获得积分10
3分钟前
3分钟前
田様应助堪冷之采纳,获得10
3分钟前
3分钟前
qidian发布了新的文献求助10
4分钟前
4分钟前
dovejingling发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
1206425219密完成签到,获得积分10
6分钟前
jyy完成签到,获得积分10
6分钟前
6分钟前
爆米花应助舒服的幼荷采纳,获得10
6分钟前
6分钟前
qidian发布了新的文献求助10
6分钟前
7分钟前
chenshiyi185完成签到,获得积分10
7分钟前
7分钟前
8分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
壮语核心名词的语言地图及解释 700
ВЕРНЫЙ ДРУГ КИТАЙСКОГО НАРОДА СЕРГЕЙ ПОЛЕВОЙ 500
ВОЗОБНОВЛЕН ВЫПУСК ЖУРНАЛА "КИТАЙ" НА РУССКОМ ЯЗЫКЕ 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906859
求助须知:如何正确求助?哪些是违规求助? 3452364
关于积分的说明 10870149
捐赠科研通 3178211
什么是DOI,文献DOI怎么找? 1755805
邀请新用户注册赠送积分活动 849100
科研通“疑难数据库(出版商)”最低求助积分说明 791370