生物
相扑蛋白
调节器
转录后调控
基因表达
基因
泛素连接酶
基因表达调控
细胞生物学
泛素
RNA剪接
转录调控
诱导剂
拼接因子
核糖核酸
遗传学
作者
Viswanathan Chinnusamy,Jianhua Zhu,Jian‐Kang Zhu
标识
DOI:10.1016/j.tplants.2007.07.002
摘要
Cold stress adversely affects plant growth and development. Most temperate plants acquire freezing tolerance by a process called cold acclimation. Here, we focus on recent progress in transcriptional, post-transcriptional and post-translational regulation of gene expression that is critical for cold acclimation. Transcriptional regulation is mediated by the inducer of C-repeat binding factor (CBF) expression 1 (ICE1), the CBF transcriptional cascade and CBF-independent regulons during cold acclimation. ICE1 is negatively regulated by ubiquitination-mediated proteolysis and positively regulated by SUMO (small ubiquitin-related modifier) E3 ligase-catalyzed sumoylation. Post-transcriptional regulatory mechanisms, such as pre-mRNA splicing, mRNA export and small RNA-directed mRNA degradation, also play important roles in cold stress responses. Cold stress adversely affects plant growth and development. Most temperate plants acquire freezing tolerance by a process called cold acclimation. Here, we focus on recent progress in transcriptional, post-transcriptional and post-translational regulation of gene expression that is critical for cold acclimation. Transcriptional regulation is mediated by the inducer of C-repeat binding factor (CBF) expression 1 (ICE1), the CBF transcriptional cascade and CBF-independent regulons during cold acclimation. ICE1 is negatively regulated by ubiquitination-mediated proteolysis and positively regulated by SUMO (small ubiquitin-related modifier) E3 ligase-catalyzed sumoylation. Post-transcriptional regulatory mechanisms, such as pre-mRNA splicing, mRNA export and small RNA-directed mRNA degradation, also play important roles in cold stress responses.
科研通智能强力驱动
Strongly Powered by AbleSci AI