Estimation of corn yield based on hyperspectral imagery and convolutional neural network

高光谱成像 卷积神经网络 人工智能 计算机科学 模式识别(心理学) 数学 遥感 计算机视觉 地理
作者
Wei Yang,Tyler J. Nigon,Ziyuan Hao,Gabriel Dias Paiao,Fabián G. Fernández,D. J. Mulla,Ce Yang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:184: 106092-106092 被引量:85
标识
DOI:10.1016/j.compag.2021.106092
摘要

Corn is an important food crop in the world, widely distributed in many countries because of its excellent environmental adaptability. Moreover, corn is an important feed source for animal production and it is an indispensable raw material for many different industries. With increasing human population and decreasing arable land, there is an increased focus on increasing yield of corn. Convolutional neural network (CNN) analysis can be used for non-destructive yield prediction and is well suited for classification and feature extraction. The overall objective of this experiment was to use hyperspectral imagery to train a CNN classification model to estimate corn grain yield. High resolution hyperspectral imagery was captured at five corn growth stages - V5 (five leaves with visible leaf collars), V8 (eight leaves with visible leaf collars), V10 (ten leaves with visible leaf collars), V12 (12 leaves with visible leaf collars), and R2 (blister stage). Hyperspectral imagery was denoised using the wavelet analysis method, then was used to train and validate the CNN model. The spectral information reflecting the internal characteristics and the spatial information provided by the color image (red, green and blue bands extracted from hyperspectral image) reflecting the external characteristics of corn growth are extracted for modelling and verification. The results show that the spectral and color image-based integrated CNN model has a classification accuracy of 75.50%. In contrast, the accuracy of a one-dimensional CNN model based only on spectral information or a two-dimensional CNN model based only on color image information were 60.39% and 32.17%, respectively. The integrated CNN model (spectral information plus color image information) is better than results of the individual one-dimensional CNN or two-dimensional CNN models. In addition. The Kappa coefficient of integrated CNN model is 0.69, which indicates a high consistency of classification. Comprehensive use of spectral information and color image information, which represent information about the inner and outer corn canopy can provide more accurate corn yield prediction than one-dimensional or two-dimensional CNN models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wujuan1606完成签到 ,获得积分10
3秒前
年轻小之完成签到 ,获得积分10
3秒前
dmr完成签到,获得积分10
5秒前
资山雁完成签到 ,获得积分10
6秒前
吉以寒完成签到,获得积分10
6秒前
幸福妙柏完成签到 ,获得积分10
6秒前
gYang完成签到,获得积分10
9秒前
Tin完成签到,获得积分10
9秒前
JamesPei应助leo采纳,获得10
10秒前
仿真小学生完成签到 ,获得积分10
11秒前
11秒前
法外狂徒唐老鸭完成签到 ,获得积分10
12秒前
Cai完成签到,获得积分10
12秒前
freeway完成签到,获得积分10
12秒前
热心的早晨完成签到,获得积分10
12秒前
neckerzhu完成签到 ,获得积分10
15秒前
Rondab应助妙奇采纳,获得10
15秒前
ycd完成签到,获得积分10
17秒前
17秒前
谦让成协完成签到,获得积分10
18秒前
小龙发布了新的文献求助20
20秒前
Rondab应助妙奇采纳,获得10
21秒前
笑林完成签到 ,获得积分10
22秒前
Claire完成签到 ,获得积分10
22秒前
nusiew完成签到,获得积分10
22秒前
科科通通完成签到,获得积分10
24秒前
29秒前
Lamis发布了新的文献求助10
32秒前
yellow完成签到,获得积分10
34秒前
清圆527完成签到,获得积分10
35秒前
CodeCraft应助bingsoy采纳,获得10
35秒前
闪落完成签到 ,获得积分20
37秒前
世间安得双全法完成签到,获得积分0
38秒前
自信热狗完成签到 ,获得积分10
41秒前
cgl155410完成签到 ,获得积分10
41秒前
姆姆没买完成签到 ,获得积分10
42秒前
爱静静完成签到,获得积分0
44秒前
50秒前
妙奇完成签到,获得积分10
54秒前
hcdb完成签到,获得积分10
58秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4001439
求助须知:如何正确求助?哪些是违规求助? 3540831
关于积分的说明 11278749
捐赠科研通 3278725
什么是DOI,文献DOI怎么找? 1808174
邀请新用户注册赠送积分活动 884376
科研通“疑难数据库(出版商)”最低求助积分说明 810291