ABCnet: Adversarial bias correction network for infant brain MR images.

计算机科学 人工智能 模式识别(心理学) 对抗制 人工神经网络 深度学习 计算机视觉
作者
Liangjun Chen,Zhengwang Wu,Dan Hu,Fan Wang,J. Keith Smith,Weili Lin,Li Wang,Dinggang Shen,Gang Li,for Unc
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:72: 102133-102133 被引量:2
标识
DOI:10.1016/j.media.2021.102133
摘要

Abstract Automatic correction of intensity nonuniformity (also termed as the bias correction) is an essential step in brain MR image analysis. Existing methods are typically developed for adult brain MR images based on the assumption that the image intensities within the same brain tissue are relatively uniform. However, this assumption is not valid in infant brain MR images, due to the dynamic and regionally-heterogeneous image contrast and appearance changes, which are caused by the underlying spatiotemporally-nonuniform myelination process. Therefore, it is not appropriate to directly use existing methods to correct the infant brain MR images. In this paper, we propose an end-to-end 3D adversarial bias correction network (ABCnet), tailored for direct prediction of bias fields from the input infant brain MR images for bias correction. The “ground-truth” bias fields for training our network are carefully defined by an improved N4 method, which integrates manually-corrected tissue segmentation maps as anatomical prior knowledge. The whole network is trained alternatively by minimizing generative and adversarial losses. To handle the heterogeneous intensity changes, our generative loss includes a tissue-aware local intensity uniformity term to reduce the local intensity variation in the corrected image. Besides, it also integrates two additional terms to enhance the smoothness of the estimated bias field and to improve the robustness of the proposed method, respectively. Comprehensive experiments with different sizes of training datasets have been carried out on a total of 1492 T1w and T2w MR images from neonates, infants, and adults, respectively. Both qualitative and quantitative evaluations on simulated and real datasets consistently demonstrate the superior performance of our ABCnet in both accuracy and efficiency, compared with popularly available methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助supersunshine采纳,获得10
刚刚
2秒前
4秒前
爆米花应助稳重的招牌采纳,获得10
4秒前
Keray完成签到,获得积分10
4秒前
sy完成签到 ,获得积分10
5秒前
7秒前
7秒前
完美世界应助宋雨采纳,获得10
8秒前
小小雪完成签到 ,获得积分10
8秒前
老茗同学关注了科研通微信公众号
8秒前
Wangyingjie5发布了新的文献求助10
8秒前
洁面乳发布了新的文献求助10
9秒前
共享精神应助风趣的野狼采纳,获得50
10秒前
务实的凝天完成签到,获得积分10
10秒前
隐形曼青应助澍澍采纳,获得10
11秒前
含蓄的明雪完成签到,获得积分10
12秒前
李爱国应助hanhan采纳,获得10
12秒前
稳重的招牌完成签到,获得积分10
12秒前
浴火重生完成签到,获得积分10
14秒前
科研通AI5应助含蓄的明雪采纳,获得10
15秒前
15秒前
香菜大王完成签到 ,获得积分10
16秒前
17秒前
紧张的碧曼完成签到 ,获得积分10
19秒前
Nathan完成签到,获得积分10
20秒前
神勇胡萝卜完成签到,获得积分10
21秒前
ZhenpuWang发布了新的文献求助10
21秒前
21秒前
善学以致用应助洁面乳采纳,获得10
22秒前
22秒前
动漫大师发布了新的文献求助10
22秒前
24秒前
mbxjsy发布了新的文献求助10
25秒前
zuducyow完成签到,获得积分10
25秒前
skysleeper完成签到,获得积分10
25秒前
ZhenpuWang完成签到,获得积分10
27秒前
罗罗发布了新的文献求助10
27秒前
28秒前
hbpu230701完成签到,获得积分0
28秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802474
求助须知:如何正确求助?哪些是违规求助? 3348068
关于积分的说明 10336437
捐赠科研通 3064012
什么是DOI,文献DOI怎么找? 1682348
邀请新用户注册赠送积分活动 808078
科研通“疑难数据库(出版商)”最低求助积分说明 763997