电阻随机存取存储器
最上等的
边缘设备
推论
炸薯条
计算机科学
嵌合体(遗传学)
GSM演进的增强数据速率
CMOS芯片
人工智能
计算机硬件
云计算
电气工程
工程类
电压
操作系统
电信
基因
机械工程
纺纱
生物化学
化学
作者
Massimo Giordano,Kartik Prabhu,Kalhan Koul,Robert M. Radway,Albert Gural,Rohan Doshi,Zainab F. Khan,John W. Kustin,Timothy Liu,Gregorio B. Lopes,Victor Turbiner,Win-San Khwa,Yu-Der Chih,Meng‐Fan Chang,Guénolé Lallement,Boris Murmann,Subhasish Mitra,Priyanka Raina
标识
DOI:10.23919/vlsicircuits52068.2021.9492347
摘要
CHIMERA is the first non-volatile deep neural network (DNN) chip for edge AI training and inference using foundry on-chip resistive RAM (RRAM) macros and no off-chip memory. CHIMERA achieves 0.92 TOPS peak performance and 2.2 TOPS/W. We scale inference to 6x larger DNNs by connecting 6 CHIMERAs with just 4% execution time and 5% energy costs, enabled by communication-sparse DNN mappings that exploit RRAM non-volatility through quick chip wakeup/shutdown (33 µs). We demonstrate the first incremental edge AI training which overcomes RRAM write energy, speed, and endurance challenges. Our training achieves the same accuracy as traditional algorithms with up to 283x fewer RRAM weight update steps and 340x better energy-delay product. We thus demonstrate 10 years of 20 samples/minute incremental edge AI training on CHIMERA.
科研通智能强力驱动
Strongly Powered by AbleSci AI