A non-invasive diabetes diagnosis method based on novel scleral imaging instrument and AI

糖尿病 医学 人口 人工智能 计算机科学 环境卫生 内分泌学
作者
Wenqi Lv,Rongxin Fu,Xue Lin,Ya Su,Xiangyu Jin,Yang Han,Xiaohui Shan,Wenli Du,Kai Jiang,Yuanhua Lin,Guoliang Huang
标识
DOI:10.1117/12.2601222
摘要

Type 2 diabetes mellitus is one of the most common metabolic diseases in the world. However, frequent blood glucose testing causes continual harm to diabetics, which cannot meet the needs of early diagnosis and long-term tracking of diabetes. Thus non-invasive adjuvant diagnosis methods are urgently needed, enabling early screening of the population for diabetes, the evaluation of diabetes risk, and assessment of therapeutic effects. The human eye plays an important role in painless and non-invasive approaches, because it is considered an internal organ but can be easily be externally observed. We developed an AI model to predict the probability of diabetes from scleral images taken by a specially developed instrument, which could conveniently and quickly collect complete scleral images in four directions and perform artificial intelligence (AI) analysis in 3 min without any reagent consumption or the need for a laboratory. The novel optical instrument could adaptively eliminate reflections and collected shadow-free scleral images. 177 subjects were recruited to participate in this experiment, including 127 benign subjects and 50 malignant subjects. The blood sample and sclera images from each subject was obtained. The scleral image classification model achieved a mean AUC over 0.85, which indicates great potential for early screening of practical diabetes during periodic physical checkups or daily family health monitoring. With this AI scleral features imaging and analysis method, diabetic patients' health conditions can be rapidly, noninvasively, and accurately analyzed, which offers a platform for noninvasive forecasting, early diagnosis, and long-term monitoring for diabetes and its complications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
奋斗蝴蝶完成签到,获得积分10
2秒前
4秒前
blkcor发布了新的文献求助10
4秒前
5秒前
6秒前
丘比特应助Zzzzzzzzzzz采纳,获得10
6秒前
Eva完成签到,获得积分10
7秒前
7秒前
8秒前
微笑的兔子完成签到,获得积分10
8秒前
Kcal完成签到,获得积分20
8秒前
Jasper应助细心蚂蚁采纳,获得10
8秒前
9秒前
狂野忆文发布了新的文献求助10
9秒前
科研通AI5应助萨尔莫斯采纳,获得10
9秒前
科研通AI5应助社会小牛马采纳,获得10
9秒前
天祥发布了新的文献求助10
11秒前
谦让路灯完成签到,获得积分10
11秒前
12秒前
随心完成签到 ,获得积分10
13秒前
成就的秋发布了新的文献求助10
13秒前
贰什柒发布了新的文献求助10
14秒前
cyanpomelo应助洋芋锅巴采纳,获得10
14秒前
思源应助gao采纳,获得10
15秒前
冰魂应助坚强的安柏采纳,获得20
16秒前
风趣的敏完成签到,获得积分10
16秒前
xyy发布了新的文献求助10
17秒前
汉堡包应助武雨寒采纳,获得10
18秒前
赵小胖完成签到,获得积分10
19秒前
奉宣室以何年完成签到,获得积分10
20秒前
完美世界应助why采纳,获得10
21秒前
动力小滋完成签到,获得积分10
21秒前
22秒前
25秒前
25秒前
我是老大应助Eve采纳,获得10
26秒前
邰墨以完成签到 ,获得积分10
27秒前
DQ1175完成签到 ,获得积分10
27秒前
贰什柒发布了新的文献求助10
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800653
求助须知:如何正确求助?哪些是违规求助? 3345954
关于积分的说明 10327950
捐赠科研通 3062411
什么是DOI,文献DOI怎么找? 1680999
邀请新用户注册赠送积分活动 807318
科研通“疑难数据库(出版商)”最低求助积分说明 763627