电解质
材料科学
阳极
镁
电极
化学工程
无机化学
化学
纳米技术
物理化学
冶金
工程类
作者
Xiaoyu Wen,Yu Zhou,Yifan Zhao,Jian Zhang,Rui Qiao,Lei Cheng,Chunmei Ban,Juchen Guo
标识
DOI:10.1021/acsami.1c10446
摘要
A new deposition mechanism is presented in this study to achieve highly reversible plating and stripping of magnesium (Mg) anodes for Mg-ion batteries. It is known that the reduction of electrolyte anions such as bis(trifluoromethanesulfonyl)imide (TFSI–) causes Mg surface passivation, resulting in poor electrochemical performance for Mg-ion batteries. We reveal that the addition of sodium cations (Na+) in Mg-ion electrolytes can fundamentally alter the interfacial chemistry and structure at the Mg anode surface. The molecular dynamics simulation suggests that Na+ cations contribute to a significant population in the interfacial double layer so that TFSI– anions are excluded from the immediate interface adjacent to the Mg anode. As a result, the TFSI– decomposition is largely suppressed so does the formation of passivation layers at the Mg surface. This mechanism is supported by our electrochemical, microscopic, and spectroscopic analyses. The resultant Mg deposition demonstrates smooth surface morphology and lowered overpotential compared to the pure Mg(TFSI)2 electrolyte.
科研通智能强力驱动
Strongly Powered by AbleSci AI