Impact of news sentiment and topics on IPO underpricing: US evidence

首次公开发行 潜在Dirichlet分配 独创性 会计 业务 情绪分析 计量经济学 经济 主题模型 广告 精算学 政治学 计算机科学 情报检索 法学 人工智能 创造力
作者
Елена Федорова,Sergei Druchok,Pavel Drogovoz
出处
期刊:International Journal of Accounting and Information Management [Emerald Publishing Limited]
卷期号:30 (1): 73-94 被引量:17
标识
DOI:10.1108/ijaim-06-2021-0117
摘要

Purpose The goal of the study is to examine the effects of news sentiment and topics dominating in the news field prior to the initial public offering (IPO) on the IPO underpricing. Design/methodology/approach The authors’ approach has several steps. The first is textual analysis. To detect the dominating topics in the news, the authors use Latent Dirichlet allocation. The authors use bidirectional encoder representations from transformers (BERT) pretrained on financial news corpus to evaluate the tonality of articles. The second is evaluation of feature importance. To this end, a linear regression with robust estimators and Classification and Regression Tree and Random Forest are used. The third is data. The text data consists of 345,731 news articles from Thomson Reuters related to the USA in the date range from 1 January 2011 to 31 May 2018. The data contains all the possible topics from the website, excluding anything related to sports. The sample of 386 initial public offerings completed in the USA from 1 January 2011 to 31 May 2018 was collected from Bloomberg Database. Findings The authors found that sentiment of the media regarding the companies going public influences IPO underpricing. Some topics, namely, the climate change and environmental policies and the trade war between the US and China, have influence on IPO underpricing if they appear in the media prior to the IPO day. Originality/value The puzzle of IPO underpricing is studied from the point of Narrative Economics theory for the first time. While most of the works cover only some specific news segment, we use Thomson Reuters news aggregator, which uses such sources The New York Post, CNN, Fox, Atlantic, The Washington Post ? Buzzfeed. To evaluate the sentiment of the articles, a state-of-the-art approach BERT is used. The hypothesis that some common narratives or topics in the public discussion may impose influence on such example of biased behaviour like IPO underpricing has also found confirmation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
j7337完成签到,获得积分10
1秒前
Dinglin发布了新的文献求助10
1秒前
答辩完成签到,获得积分10
2秒前
光亮谷秋完成签到,获得积分10
2秒前
笑点低的翠绿完成签到 ,获得积分10
3秒前
辉仔发布了新的文献求助10
3秒前
慕青应助迷路以筠采纳,获得10
4秒前
NexusExplorer应助沐屿宸采纳,获得10
8秒前
顾矜应助窦鞅采纳,获得50
8秒前
一一完成签到,获得积分10
9秒前
香蕉觅云应助tdtk采纳,获得10
10秒前
LIU发布了新的文献求助10
10秒前
嘉嘉发布了新的文献求助10
10秒前
10秒前
10秒前
kaikai晴应助yayyaya采纳,获得10
10秒前
所所应助辉仔采纳,获得10
11秒前
13秒前
13秒前
Chaos_Law完成签到 ,获得积分10
14秒前
大马哥完成签到 ,获得积分10
14秒前
WuCola完成签到 ,获得积分10
15秒前
yilimilk发布了新的文献求助10
15秒前
领导范儿应助超帅的豪英采纳,获得10
16秒前
光亮谷秋发布了新的文献求助10
17秒前
万能图书馆应助浩然采纳,获得10
17秒前
梦梦发布了新的文献求助10
17秒前
heheheli完成签到,获得积分10
17秒前
miya发布了新的文献求助10
18秒前
18秒前
Fan_完成签到,获得积分20
19秒前
genius_yue发布了新的文献求助10
19秒前
高兴的玉米完成签到 ,获得积分10
20秒前
科研通AI2S应助快乐梦松采纳,获得10
21秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4088842
求助须知:如何正确求助?哪些是违规求助? 3627556
关于积分的说明 11501967
捐赠科研通 3340306
什么是DOI,文献DOI怎么找? 1836275
邀请新用户注册赠送积分活动 904291
科研通“疑难数据库(出版商)”最低求助积分说明 822208