Learning the Optimal Partition for Collaborative DNN Training With Privacy Requirements

计算机科学 边缘设备 服务器 边缘计算 分拆(数论) 钥匙(锁) 人工神经网络 分布式计算 人工智能 GSM演进的增强数据速率 机器学习 计算机网络 云计算 操作系统 数学 组合数学
作者
Letian Zhang,Jie Xu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (13): 11168-11178 被引量:10
标识
DOI:10.1109/jiot.2021.3127715
摘要

With the growth of intelligent Internet of Things (IoT) applications and services, deep neural network (DNN) has become the core method to power and enable increased functionality in many smart IoT devices. However, DNN training is difficult to carry out on end devices because it requires a great deal of computational power. The conventional approach to DNN training is generally implemented on a powerful computation server; nevertheless, this approach violates privacy because it exposes the training data to curious service providers. In this article, we consider a collaborative DNN training system between a resource-constrained end device and a powerful edge server, aiming at partitioning a DNN into a front-end part running on the end device and a back-end part running on the edge server to accelerate the training process while preserving the privacy of the training data. With the key challenge being how to locate the optimal partition point to minimize the end-to-end training delay, we propose an online learning module, called learn-to-split (L2S), to adaptively learn the optimal partition point on the fly. This approach is unlike existing efforts on DNN partitioning that relies heavily on a dedicated offline profiling stage. In particular, we design a new contextual bandit learning algorithm called LinUCB-E as the basis of L2S, which has provable theoretical learning performance and is ultralightweight for easy real-world implementation. We implement a prototype system consisting of an end device and an edge server, and experimental results demonstrate that L2S can significantly outperform state-of-the-art benchmarks in terms of reducing the end-to-end training delay and preserving privacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
糖果不甜完成签到,获得积分10
刚刚
庾烙完成签到,获得积分20
1秒前
Orange应助生物摸鱼大师采纳,获得10
1秒前
烟花应助星河采纳,获得10
1秒前
1秒前
Asystasia7发布了新的文献求助10
1秒前
Lemon完成签到,获得积分10
2秒前
占囧发布了新的文献求助10
2秒前
Rakuen42完成签到,获得积分10
2秒前
Hilda007应助windli采纳,获得10
2秒前
星辰大海应助Sunrise采纳,获得10
2秒前
3秒前
科研通AI6应助欧耶欧椰采纳,获得10
3秒前
甜芝士耶完成签到,获得积分10
3秒前
彭于晏应助王振强采纳,获得30
3秒前
周宇飞发布了新的文献求助10
3秒前
庾烙发布了新的文献求助10
4秒前
可爱的函函应助lll采纳,获得10
4秒前
南夕完成签到,获得积分10
4秒前
5秒前
噢噢噢噢完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
乐乐应助dudu采纳,获得10
6秒前
11完成签到 ,获得积分10
6秒前
Zzhn完成签到,获得积分10
6秒前
vickylow完成签到,获得积分10
6秒前
所所应助Luke采纳,获得10
7秒前
7秒前
火星上香菇完成签到,获得积分10
7秒前
7秒前
Asystasia7完成签到,获得积分10
7秒前
7秒前
7秒前
风槿发布了新的文献求助10
8秒前
Arundel完成签到,获得积分10
8秒前
南夕发布了新的文献求助10
8秒前
fff发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396796
求助须知:如何正确求助?哪些是违规求助? 4517121
关于积分的说明 14062479
捐赠科研通 4428983
什么是DOI,文献DOI怎么找? 2432179
邀请新用户注册赠送积分活动 1424661
关于科研通互助平台的介绍 1403657