Tracing the source of heavy metal pollution in water sources of Tourist Attractions Based on GIS remote sensing

污染 分水岭 追踪 环境科学 污染物 非点源污染 光污染 遥感 水文学(农业) 地质学 计算机科学 化学 生态学 物理 生物 操作系统 机器学习 光学 有机化学 岩土工程
作者
Jianghong Mo,Xinling Tian,Wei Shen
出处
期刊:Earth Sciences Research Journal [Universidad Nacional de Colombia]
卷期号:25 (2): 207-214 被引量:5
标识
DOI:10.15446/esrj.v25n2.84631
摘要

To effectively prevent heavy metal pollution in water sources in tourist attractions, clarify the degree of control of heavy metal pollution sources, and improve the accuracy of tracing results, a GIS-based remote sensing method of heavy metal pollution in tourist attractions is proposed. Using GIS spatial analysis method, the DEM elevation data monitored by remote sensing is obtained, the watershed geographic information is compiled, and the GPS obtains the longitude and latitude coordinates to locate the source of heavy metal pollution. The plug-in application framework is designed, and the watershed geographic information and plug-in application framework are integrated to build the pollution tracing platform. According to the mixing direction of pollutants after entering the water source, the migration and diffusion coordinate system of heavy metal pollution in the water source is established. The spatial-temporal distribution function model of heavy metal pollutants in water sources is constructed through the migration, transformation, and concentration of heavy metal pollutants in water sources. The tracing results of heavy metal pollution in water sources of scenic spots are obtained. The results showed that the order of variation coefficient of heavy metal pollution elements was Cr > Cd > Cu > Ni > Zn > Pb. The spatial distribution of heavy metal pollution elements was extremely uneven. There was a certain positive correlation between Ni and Cr, and the correlation coefficient of Cu and Zn was 0.78. The positive correlation was very significant, and the homology was very strong. Moreover, the identification result of the proposed method is very close to the real value, which can accurately trace the source of heavy metal pollution in the water source of tourist attractions, with small tracing error and high accuracy of tracing result evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
effort发布了新的文献求助10
1秒前
asss完成签到,获得积分10
2秒前
3秒前
3秒前
怕黑的凝旋完成签到,获得积分10
3秒前
3秒前
3秒前
於成协完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
蛋挞完成签到 ,获得积分10
6秒前
梓航完成签到,获得积分10
6秒前
晋姝完成签到,获得积分10
8秒前
CodeCraft应助怡然的海瑶采纳,获得30
8秒前
8秒前
葛。发布了新的文献求助10
9秒前
yan发布了新的文献求助10
9秒前
领导范儿应助SAY采纳,获得10
9秒前
高大的小松鼠完成签到,获得积分10
10秒前
蓝梦一刀发布了新的文献求助10
10秒前
刻苦的寒凝完成签到,获得积分10
10秒前
Zziiixl发布了新的文献求助10
10秒前
大吧唧应助英俊愚志采纳,获得10
10秒前
10秒前
所所应助NANA采纳,获得30
10秒前
然十六发布了新的文献求助10
10秒前
苹果新蕾完成签到,获得积分10
11秒前
Ting222完成签到,获得积分10
12秒前
12秒前
12秒前
优美完成签到,获得积分10
13秒前
yuewang完成签到,获得积分10
13秒前
Ryann发布了新的文献求助20
13秒前
量子星尘发布了新的文献求助10
13秒前
9527King完成签到,获得积分10
14秒前
Orange应助glass_light采纳,获得10
16秒前
yuewang发布了新的文献求助10
16秒前
李健的小迷弟应助哒哒采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434617
求助须知:如何正确求助?哪些是违规求助? 4546969
关于积分的说明 14205190
捐赠科研通 4466978
什么是DOI,文献DOI怎么找? 2448366
邀请新用户注册赠送积分活动 1439268
关于科研通互助平台的介绍 1416060