清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Transformer Networks for Trajectory Forecasting

变压器 计算机科学 人工智能 水准点(测量) 机器学习 工程类 电气工程 大地测量学 电压 地理
作者
Francesco Giuliari,Irtiza Hasan,Marco Cristani,Fabio Galasso
标识
DOI:10.1109/icpr48806.2021.9412190
摘要

Most recent successes on forecasting the people motion are based on LSTM models and all most recent progress has been achieved by modelling the social interaction among people and the people interaction with the scene. We question the use of the LSTM models and propose the novel use of Transformer Networks for trajectory forecasting. This is a fundamental switch from the sequential step-by-step processing of LSTMs to the only-attention-based memory mechanisms of Transformers. In particular, we consider both the original Transformer Network (TF) and the larger Bidirectional Transformer (BERT), state-of-the-art on all natural language processing tasks. Our proposed Transformers predict the trajectories of the individual people in the scene. These are “simple” models because each person is modelled separately without any complex human-human nor scene interaction terms. In particular, the TF model without bells and whistles yields the best score on the largest and most challenging trajectory forecasting benchmark of TrajNet [1]. Additionally, its extension which predicts multiple plausible future trajectories performs on par with more engineered techniques on the 5 datasets of ETH [2]+UCY [3]. Finally, we show that Transformers may deal with missing observations, as it may be the case with real sensor data. Code is available at github.com/FGiuliari/Trajectory-Transformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
3秒前
完美世界应助读书的时候采纳,获得10
13秒前
果酱完成签到,获得积分10
15秒前
16秒前
汤圆完成签到 ,获得积分10
16秒前
linghanlan发布了新的文献求助10
21秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
30秒前
科研通AI6应助科研通管家采纳,获得10
30秒前
33秒前
41秒前
传奇3应助读书的时候采纳,获得10
43秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
乔杰完成签到 ,获得积分10
1分钟前
方白秋完成签到,获得积分0
1分钟前
1分钟前
英姑应助linghanlan采纳,获得10
1分钟前
落山姬完成签到,获得积分10
1分钟前
1分钟前
1分钟前
ffff完成签到 ,获得积分10
2分钟前
灵巧的代芙完成签到 ,获得积分10
2分钟前
2分钟前
爆米花应助读书的时候采纳,获得30
2分钟前
婉莹完成签到 ,获得积分0
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
Ägyptische Geschichte der 21.–30. Dynastie 1520
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739877
求助须知:如何正确求助?哪些是违规求助? 5390893
关于积分的说明 15340059
捐赠科研通 4882216
什么是DOI,文献DOI怎么找? 2624255
邀请新用户注册赠送积分活动 1572960
关于科研通互助平台的介绍 1529835