A practical system based on CNN-BLSTM network for accurate classification of ECG heartbeats of MIT-BIH imbalanced dataset

计算机科学 卷积神经网络 人工智能 模式识别(心理学)
作者
Armin Shoughi,Mohammad Bagher Dowlatshahi
标识
DOI:10.1109/csicc52343.2021.9420620
摘要

ECG beats have a key role in the reduction of fatality rate arising from cardiovascular diseases (CVDs) by using Arrhythmia diagnosis computer-aided systems and get the important information from patient cardiac conditions to the specialist. However, the accuracy and speed of arrhythmia diagnosis are challenging in ECG classification systems, and the existence of noise, instability nature, and imbalance in heartbeats challenged these systems. Accurate and on-time diagnosis of CVDs is a vital and important factor. So it has a significant effect on the treatment and recovery of patients. In this study, with the aim of accurate diagnosis of CVDs types, according to arrhythmia in ECG heartbeats, we implement an automatic ECG heartbeats classification by using discrete wavelet transformation on db2 mother wavelet and SMOTE oversampling algorithm as pre-processing level, and a classifier that consists of Convolutional neural network and BLSTM network. Then evaluate the proposed system on MIT-BIH imbalanced dataset, according to AAMI standards. The evaluations results show this approach with 50 epoch training achieved 99.78% accuracy for category F, 98.85% accuracy for category N, 99.43% accuracy for category S, 99.49% accuracy for category V, 99.87% accuracy for category Q. The source code is available at https://gitlab.com/arminshoughi/cnnlstmecg-classification. Our proposed classification system can be used as a tool for the automatic diagnosis of arrhythmia for CVDs specialists with the aim of primary screening of patients with heart arrhythmia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
英姑应助苗条的荧荧采纳,获得10
刚刚
小杨完成签到,获得积分10
刚刚
缥缈千风完成签到,获得积分10
1秒前
芳芳发布了新的文献求助10
2秒前
dan关注了科研通微信公众号
2秒前
我还好发布了新的文献求助10
2秒前
2秒前
颖涵完成签到,获得积分10
2秒前
3秒前
3秒前
wmm发布了新的文献求助10
3秒前
干净初雪完成签到,获得积分10
3秒前
麦冬完成签到,获得积分20
4秒前
灯灯完成签到 ,获得积分20
4秒前
ffq完成签到 ,获得积分10
4秒前
5秒前
CodeCraft应助zh采纳,获得10
6秒前
6秒前
6秒前
6秒前
小贺发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
guojingjing发布了新的文献求助10
9秒前
JJP完成签到,获得积分10
9秒前
10秒前
lpf发布了新的文献求助10
10秒前
10秒前
zt完成签到 ,获得积分10
10秒前
11秒前
妩媚的海应助小立采纳,获得10
14秒前
妩媚的海应助小立采纳,获得10
14秒前
luck发布了新的文献求助10
15秒前
万邦德完成签到,获得积分10
15秒前
Maestro_S应助岁岁采纳,获得10
15秒前
lina发布了新的文献求助10
16秒前
17秒前
17秒前
我是老大应助SYSUer采纳,获得10
17秒前
林夕完成签到 ,获得积分20
18秒前
星辰大海应助路过看看采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492703
求助须知:如何正确求助?哪些是违规求助? 4590700
关于积分的说明 14431835
捐赠科研通 4523205
什么是DOI,文献DOI怎么找? 2478231
邀请新用户注册赠送积分活动 1463254
关于科研通互助平台的介绍 1436012