已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A CT Image-Based Virtual Sensing Method to Estimate Bone Drilling Force for Surgery Robots.

计算机视觉 计算机科学 人工智能 生物医学工程 机器人 图像处理 触觉技术
作者
Liang Li,Sheng Yang,Wuke Peng,Ding Hui,Guangzhi Wang
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tbme.2021.3108400
摘要

AbstractObjective: Understanding medical images like the human surgeon is a challenge for current surgical robots. It is still hard for surgical robots to achieve safe and stable operations with the help of priori information from preoperative images. We proposed a method to estimate drilling force information based on preoperative images, which can provide priori force information for surgical robots to perform bone drilling tasks. Methods A visual sensing computing framework is proposed to obtain the 3D image information from the drill-tissue contact area in a one-dimensional signal format. Under this computing framework, a computed tomography (CT) image-weighted bone drilling mechanical model is built. The model considers both targets bone shape and material properties to predict the thrust force, torque, and radial force of a drilling process based on preoperative CT images. Results The built model can respond to multiple bone drilling process factors, such as personalized surgery plans, varying tissue densities, uneven drilling surfaces, different drilling speeds, feed rates, and drill bit geometries. The minimum error of the predicted thrust force on bovine bones is 1.130.95 N, and the best normalized average prediction error on porcine bones is 0.070.08. Experiments in spinal pedicle screw placement surgery also show potential application abilities. Conclusion Our method predicts the bone drilling force well based on preoperative images, providing robots with more efficient preoperative information. Significance This work offers a new perspective to study the interaction relationship between robot surgical instruments and tissues with the assistance of preoperative images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
东篱发布了新的文献求助10
1秒前
卡恩完成签到 ,获得积分10
3秒前
ddd发布了新的文献求助10
3秒前
4秒前
limit发布了新的文献求助10
5秒前
思源应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得30
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
Eddy完成签到,获得积分10
6秒前
暖暖完成签到 ,获得积分10
12秒前
liu完成签到,获得积分10
12秒前
12秒前
13秒前
马华化完成签到,获得积分0
14秒前
14秒前
棒棒糖完成签到,获得积分10
14秒前
马美丽完成签到 ,获得积分10
14秒前
乔达摩悉达多完成签到 ,获得积分10
14秒前
14秒前
简单秋烟发布了新的文献求助10
17秒前
champ发布了新的文献求助10
17秒前
棒棒糖发布了新的文献求助10
17秒前
无辜洋葱发布了新的文献求助10
18秒前
20秒前
Yossi发布了新的文献求助10
20秒前
yydragen给虚幻白桃的求助进行了留言
23秒前
糊涂小医仙完成签到,获得积分10
24秒前
Akim应助简单秋烟采纳,获得10
24秒前
欣欣然发布了新的文献求助20
25秒前
大力的怜梦完成签到,获得积分10
26秒前
psychopan发布了新的文献求助10
26秒前
孙文杰完成签到 ,获得积分10
28秒前
30秒前
33秒前
33秒前
cccr02发布了新的文献求助10
34秒前
科研通AI5应助ppkdc采纳,获得10
35秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Champagne & Shambles: The Arkwright's and the Country House in Crisis 200
The Arkwrights: Spinners of Fortune 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837158
求助须知:如何正确求助?哪些是违规求助? 3379391
关于积分的说明 10509035
捐赠科研通 3099102
什么是DOI,文献DOI怎么找? 1706862
邀请新用户注册赠送积分活动 821311
科研通“疑难数据库(出版商)”最低求助积分说明 772499