polyG2G: A Novel Machine Learning Algorithm Applied to the Generative Design of Polymer Dielectrics

电介质 化学空间 聚合物 生成设计 材料科学 计算机科学 图形 算法 翻译(生物学) 带隙 纳米技术 理论计算机科学 化学 光电子学 基因 信使核糖核酸 药物发现 复合材料 生物化学 相容性(地球化学)
作者
Rishi Gurnani,Deepak Kamal,Tran Doan Huan,Harikrishna Sahu,Kenny Scharm,Usman Ashraf,Rampi Ramprasad
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:33 (17): 7008-7016 被引量:57
标识
DOI:10.1021/acs.chemmater.1c02061
摘要

Polymers, due to advantages such as low-cost processing, chemical stability, low density, and tunable design, have emerged as a powerhouse class of materials for a wide range of applications, including dielectrics. However, in certain applications, the performance of dielectrics is limited by insufficient electric breakdown strength. Using this real-world application as a technology driver, we describe a novel artificial intelligence (AI)-based approach for the design of polymers. We call this approach polyG2G. The key concept underlying polyG2G is graph-to-graph translation. Graph-to-graph translation solves the inverse problem. First, the subtle chemical differences between high- and low-performing polymers are learned. Then, the learned differences are applied to known polymers, yielding large libraries of novel, high-performing, hypothetical polymers. Our approach, with respect to a host of presently adopted design methods, exhibits a favorable trade-off between generation of chemically valid materials and available chemical search space. polyG2G finds thousands of potentially high-value targets (in terms of glass-transition temperature, band gap, and electron injection barrier) from an otherwise intractable search space. Density functional theory simulations of band gap and electron injection barrier confirm that a large fraction of the polymers designed by polyG2G are indeed of high value. Finally, we find that polyG2G is able to learn established structure–property relationships.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
song完成签到 ,获得积分10
1秒前
奋斗的桐发布了新的文献求助10
2秒前
Ty_1029完成签到 ,获得积分10
6秒前
万能图书馆应助冷静书白采纳,获得10
6秒前
量子星尘发布了新的文献求助150
7秒前
8秒前
乐乐应助Koi采纳,获得10
9秒前
踏实的盼秋完成签到 ,获得积分10
9秒前
明明就完成签到 ,获得积分10
12秒前
葱葱不吃葱完成签到 ,获得积分10
13秒前
13秒前
13秒前
JCyang完成签到,获得积分10
13秒前
15秒前
16秒前
微笑幻波完成签到,获得积分10
17秒前
JCyang发布了新的文献求助10
18秒前
深海发布了新的文献求助10
19秒前
myduty完成签到 ,获得积分10
20秒前
斯文败类应助李治海采纳,获得10
20秒前
Akim应助yuananw采纳,获得10
22秒前
Neuro_dan完成签到,获得积分0
22秒前
ypp完成签到,获得积分10
25秒前
Mengqi完成签到,获得积分10
25秒前
清脆泥猴桃完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助150
27秒前
深海完成签到,获得积分10
27秒前
科研通AI5应助懵懂的翠容采纳,获得10
29秒前
晨光中完成签到,获得积分10
30秒前
吕凯良完成签到,获得积分20
31秒前
冯聪聪完成签到,获得积分10
33秒前
34秒前
34秒前
pluto应助吕凯良采纳,获得10
35秒前
南怀发布了新的文献求助10
36秒前
抚琴祛魅发布了新的文献求助10
37秒前
忧郁平蝶完成签到 ,获得积分10
38秒前
王燕发布了新的文献求助10
41秒前
cdx完成签到,获得积分10
41秒前
YL发布了新的文献求助10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Irregular Migration in Southeast Asia: Contemporary Barriers to Regularization and Healthcare 2000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5057136
求助须知:如何正确求助?哪些是违规求助? 4282531
关于积分的说明 13345908
捐赠科研通 4099525
什么是DOI,文献DOI怎么找? 2244328
邀请新用户注册赠送积分活动 1250382
关于科研通互助平台的介绍 1180864