Three Differential Expression Analysis Methods for RNA Sequencing: limma, EdgeR, DESeq2

生物 负二项分布 计算生物学 计算机科学 统计 数学 泊松分布
作者
Shiyi Liu,Zitao Wang,Ronghui Zhu,Feiyan Wang,Yanxiang Cheng,Yeqiang Liu
出处
期刊:Journal of Visualized Experiments [MyJOVE]
卷期号: (175) 被引量:191
标识
DOI:10.3791/62528
摘要

RNA sequencing (RNA-seq) is one of the most widely used technologies in transcriptomics as it can reveal the relationship between the genetic alteration and complex biological processes and has great value in diagnostics, prognostics, and therapeutics of tumors. Differential analysis of RNA-seq data is crucial to identify aberrant transcriptions, and limma, EdgeR and DESeq2 are efficient tools for differential analysis. However, RNA-seq differential analysis requires certain skills with R language and the ability to choose an appropriate method, which is lacking in the curriculum of medical education. Herein, we provide the detailed protocol to identify differentially expressed genes (DEGs) between cholangiocarcinoma (CHOL) and normal tissues through limma, DESeq2 and EdgeR, respectively, and the results are shown in volcano plots and Venn diagrams. The three protocols of limma, DESeq2 and EdgeR are similar but have different steps among the processes of the analysis. For example, a linear model is used for statistics in limma, while the negative binomial distribution is used in edgeR and DESeq2. Additionally, the normalized RNA-seq count data is necessary for EdgeR and limma but is not necessary for DESeq2. Here, we provide a detailed protocol for three differential analysis methods: limma, EdgeR and DESeq2. The results of the three methods are partly overlapping. All three methods have their own advantages, and the choice of method only depends on the data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容山槐发布了新的文献求助10
刚刚
星辰大海应助向日葵采纳,获得10
1秒前
粱三问完成签到 ,获得积分10
1秒前
负责的太兰完成签到,获得积分10
1秒前
希望天下0贩的0应助ffddsdc采纳,获得10
2秒前
bkagyin应助墨扬采纳,获得10
3秒前
杜先生发布了新的文献求助10
3秒前
无奈的海白完成签到,获得积分10
5秒前
Ava应助负责的太兰采纳,获得10
6秒前
CipherSage应助李瑾采纳,获得10
6秒前
7秒前
落后的丹彤完成签到,获得积分10
8秒前
优雅冷风完成签到,获得积分10
8秒前
所所应助甘地采纳,获得10
8秒前
天天快乐应助魔幻的千山采纳,获得10
8秒前
量子星尘发布了新的文献求助100
9秒前
赫连志泽发布了新的文献求助10
10秒前
小杭76应助zeng采纳,获得10
10秒前
zx666完成签到,获得积分10
10秒前
11秒前
科研通AI5应助星辰采纳,获得10
12秒前
huan完成签到 ,获得积分10
13秒前
13秒前
Cj完成签到 ,获得积分10
16秒前
高高的从波完成签到,获得积分10
16秒前
积极向上完成签到,获得积分10
16秒前
浮游应助mumumuzzz采纳,获得10
18秒前
香蕉觅云应助立军采纳,获得30
18秒前
19秒前
晅007发布了新的文献求助10
19秒前
20秒前
韩璐完成签到,获得积分10
20秒前
21秒前
22秒前
乐乐应助Yolyna采纳,获得10
22秒前
23秒前
张健发布了新的文献求助10
23秒前
星辰发布了新的文献求助10
24秒前
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4886370
求助须知:如何正确求助?哪些是违规求助? 4171318
关于积分的说明 12944769
捐赠科研通 3931831
什么是DOI,文献DOI怎么找? 2157283
邀请新用户注册赠送积分活动 1175706
关于科研通互助平台的介绍 1080208