DS-TransUNet: Dual Swin Transformer U-Net for Medical Image Segmentation

编码器 计算机科学 变压器 人工智能 分割 图像分割 计算机视觉 模式识别(心理学) 工程类 电压 电气工程 操作系统
作者
Ailiang Lin,Bingzhi Chen,Jiayu Xu,Zheng Zhang,Guangming Lu,David Zhang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-15 被引量:482
标识
DOI:10.1109/tim.2022.3178991
摘要

Automatic medical image segmentation has made great progress owing to the powerful deep representation learning. Inspired by the success of self-attention mechanism in Transformer, considerable efforts are devoted to designing the robust variants of encoder-decoder architecture with Transformer. However, the patch division used in the existing Transformer-based models usually ignores the pixel-level intrinsic structural features inside each patch. In this paper, we propose a novel deep medical image segmentation framework called Dual Swin Transformer U-Net (DS-TransUNet), which aims to incorporate the hierarchical Swin Transformer into both encoder and decoder of the standard U-shaped architecture. Our DS-TransUNet benefits from the self-attention computation in Swin Transformer and the designed dual-scale encoding, which can effectively model the non-local dependencies and multi-scale contexts for enhancing the semantic segmentation quality of varying medical images. Unlike many prior Transformer-based solutions, the proposed DS-TransUNet adopts a well-established dual-scale encoding mechanism that utilizes dual-scale encoders based on Swin Transformer to extract the coarse and fine-grained feature representations of different semantic scales. Meanwhile, a well-designed Transformer Interactive Fusion (TIF) module is proposed to effectively perform the multi-scale information fusion through the self-attention mechanism. Furthermore, we introduce the Swin Transformer block into decoder to further explore the long-range contextual information during the up-sampling process. Extensive experiments across four typical tasks for medical image segmentation demonstrate the effectiveness of DS-TransUNet, and our approach significantly outperforms the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助RoyChen采纳,获得10
刚刚
ww发布了新的文献求助10
1秒前
yoyo完成签到,获得积分10
1秒前
依妍完成签到,获得积分10
1秒前
mount完成签到,获得积分10
1秒前
失眠的香菇完成签到 ,获得积分10
2秒前
yulin_lyn发布了新的文献求助30
2秒前
彭于晏应助自然的依风采纳,获得30
2秒前
2秒前
欣欣完成签到,获得积分10
3秒前
3秒前
YG-in发布了新的文献求助10
3秒前
独特道消完成签到,获得积分20
4秒前
4秒前
Gao完成签到,获得积分10
4秒前
4秒前
九星完成签到 ,获得积分10
4秒前
4秒前
5秒前
6秒前
6秒前
SciGPT应助PSCs采纳,获得10
7秒前
8秒前
8秒前
晚霞不晚发布了新的文献求助30
9秒前
9秒前
9秒前
FashionBoy应助55666采纳,获得10
9秒前
nibaba完成签到,获得积分10
9秒前
领导范儿应助林大胖子采纳,获得10
9秒前
sssssss发布了新的文献求助10
9秒前
我是老大应助ww采纳,获得10
9秒前
11秒前
siraotianya完成签到,获得积分10
11秒前
cebr完成签到,获得积分10
12秒前
落落发布了新的文献求助10
12秒前
大饼卷肉完成签到,获得积分10
12秒前
sora98完成签到 ,获得积分10
12秒前
阿泽发布了新的文献求助10
12秒前
汉堡包应助乐视薯片采纳,获得10
12秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816802
求助须知:如何正确求助?哪些是违规求助? 3360159
关于积分的说明 10407045
捐赠科研通 3078172
什么是DOI,文献DOI怎么找? 1690613
邀请新用户注册赠送积分活动 813964
科研通“疑难数据库(出版商)”最低求助积分说明 767910