亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Coupled Continuous-Time Markov Chain–Bayesian Network Model for Dam Failure Risk Prediction

流入 水力发电 贝叶斯网络 马尔可夫链 变量(数学) 风险评估 计算机科学 环境科学 可靠性工程 工程类 气象学 数学 地理 计算机安全 电气工程 机器学习 数学分析 人工智能
作者
Ahmed Badr,Ahmed Yosri,Sonia Hassini,Wael El‐Dakhakhni
出处
期刊:Journal of Infrastructure Systems [American Society of Civil Engineers]
卷期号:27 (4) 被引量:17
标识
DOI:10.1061/(asce)is.1943-555x.0000649
摘要

Hydropower dams are critical infrastructure systems characterized by their complex, dynamic, and stochastic behaviors. The frequent variation in the hydrological and meteorological variables poses a higher probability of dam failure, highlighting the need to improve pertinent risk assessment approaches to predict failure risks, considering the uncertain states of such variables. Bayesian networks (BN) analysis has been a key risk assessment tool for decades; however, BN's static acyclic nature is a recognized drawback. In this paper, a continuous-time Markov chain (CTMC) is coupled with a BN model to enable the dynamic assessment of dam failure risk. In this respect, BN is used to represent the interrelation among the system variables and simulate the propagation of uncertainties throughout the system, whereas the CTMC is adopted to describe the continuous transition of the system variables over their respective states. To demonstrate its applicability, the developed coupled BN-CTMC model was employed to predict the probability of failure of the Daisy Lake Dam in the province of British Columbia, Canada, under the uncertainty of reservoir water level, inflow, and wind speed states. The developed BN-CTMC modeling approach can aid in the development of reliable dam operation schemes and risk mitigation strategies through (1) adequately representing the propagation of the hydrological (e.g., inflow and reservoir water level) and meteorological (e.g., wind speed) variable uncertainties through dam system dynamical processes; (2) effectively quantifying dam failure risk under different operational conditions and failure scenarios; (3) accurately specifying the critical periods of dam system operational safety; and (4) providing in-depth understanding of the relationships between the dam system's failure and associated variables over time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
赘婿应助科研启动采纳,获得30
1秒前
Jasper应助summer采纳,获得10
10秒前
17秒前
21秒前
27秒前
无花果应助青柠采纳,获得10
35秒前
37秒前
41秒前
电量过低完成签到 ,获得积分10
45秒前
48秒前
青柠发布了新的文献求助10
52秒前
山东大煎饼完成签到,获得积分10
54秒前
54秒前
酷酷海豚完成签到,获得积分10
55秒前
56秒前
浮游应助科研通管家采纳,获得10
57秒前
Huzhu应助科研通管家采纳,获得10
57秒前
CipherSage应助科研通管家采纳,获得10
57秒前
浮浮世世应助科研通管家采纳,获得30
57秒前
Huzhu应助科研通管家采纳,获得10
57秒前
浮游应助科研通管家采纳,获得10
57秒前
Huzhu应助科研通管家采纳,获得10
57秒前
浮游应助科研通管家采纳,获得10
57秒前
隐形曼青应助科研通管家采纳,获得10
57秒前
Nnnnnkw完成签到 ,获得积分10
57秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
华理附院孙文博完成签到 ,获得积分10
1分钟前
大胆的芸遥完成签到 ,获得积分10
1分钟前
打打应助21145077采纳,获得10
1分钟前
1分钟前
1分钟前
何为完成签到 ,获得积分0
1分钟前
难过的踏歌完成签到,获得积分10
1分钟前
1分钟前
1分钟前
王文艺发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493845
求助须知:如何正确求助?哪些是违规求助? 4591820
关于积分的说明 14434723
捐赠科研通 4524256
什么是DOI,文献DOI怎么找? 2478740
邀请新用户注册赠送积分活动 1463717
关于科研通互助平台的介绍 1436499