Depth-Dependent Understanding of Cathode Electrolyte Interphase (CEI) on the Layered Li-Ion Cathodes Operated at Extreme High Temperature

阴极 电解质 X射线光电子能谱 材料科学 化学 X射线吸收光谱法 电化学 吸收光谱法 分析化学(期刊) 化学工程 无机化学 电极 物理化学 物理 工程类 量子力学 色谱法
作者
Sudhan Nagarajan,Conan Weiland,Sooyeon Hwang,Mahalingam Balasubramanian,Leela Mohana Reddy Arava
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:34 (10): 4587-4601 被引量:21
标识
DOI:10.1021/acs.chemmater.2c00435
摘要

The high-temperature operation of Li-ion batteries is highly dependent on the stability of the cathode electrolyte interphase (CEI) formed during lithiation–delithiation reactions. However, knowledge on the nature of the CEI is limited and its stability under extreme temperatures is not well understood. Therefore, herein, we investigate a proof-of-concept study on stabilizing CEI on model LiNi0.33Mn0.33Co0.33O2 (NMC333) at an extreme operation condition of 100 °C using the thermally stable pyrrolidinium-based ionic liquid electrolyte. The electrochemical lithiation–delithiation reactions at 100 °C and the CEI evolution upon different cycling conditions are investigated. Further, the depth-dependent CEI chemistry was investigated using energy-tunable synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES). The results reveal that the high-temperature operation accelerated the CEI formation compared to room temperature, and the surface of the interphase layer is rich in boron-based inorganic moieties than the deeper surface. Further, bulk-sensitive X-ray absorption spectroscopy (XAS) was used to investigate the transition-metal redox contributors during high-temperature electrochemical reactions; similar to room temperature, the Ni2+/4+ redox couple is the only charge-compensating redox couple during high-temperature operation. Finally, the physical nature of the conformal CEI on the cathode particles was visualized with high-resolution transmission electron microscopy, which confirms that the significant degradation of cathode particles without conformal CEI is due to the transformation of a layer-to-spinel formation at extreme temperature. In this study, understanding this high-temperature interfacial chemistry of NMC cathodes through advanced spectroscopy and microscopy will shed light on transforming the ambient-temperature Li-ion chemistry into high-temperature applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
。。。。。。完成签到,获得积分10
1秒前
鹿夏之发布了新的文献求助10
2秒前
Hello应助晴晴采纳,获得10
2秒前
2秒前
我是老大应助dj幸福旅行采纳,获得10
3秒前
正直三颜发布了新的文献求助10
3秒前
3秒前
露露完成签到,获得积分10
4秒前
虎虎完成签到,获得积分20
4秒前
5秒前
情怀应助您不疼采纳,获得10
6秒前
缓慢的秋莲完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
小二郎应助hbb采纳,获得10
8秒前
8秒前
桐桐应助cfyoung采纳,获得10
8秒前
9秒前
9秒前
科研通AI2S应助12316采纳,获得10
9秒前
积极平蓝发布了新的文献求助10
10秒前
李健应助科研小废物采纳,获得30
10秒前
Fan完成签到,获得积分10
11秒前
11秒前
11秒前
moon应助bertrand采纳,获得30
11秒前
xuk发布了新的文献求助10
13秒前
云中应助Jzh1032457162采纳,获得10
13秒前
14秒前
KK发布了新的文献求助10
14秒前
15秒前
大模型应助wwww采纳,获得10
15秒前
16秒前
赘婿应助虎虎采纳,获得10
16秒前
桃乐丝完成签到,获得积分20
18秒前
幽默不愁完成签到,获得积分10
18秒前
科研通AI2S应助12316采纳,获得10
18秒前
Hello应助ghost采纳,获得10
19秒前
高分求助中
Un calendrier babylonien des travaux, des signes et des mois: Séries iqqur îpuš 1036
IG Farbenindustrie AG and Imperial Chemical Industries Limited strategies for growth and survival 1925-1953 800
Sustainable Land Management: Strategies to Cope with the Marginalisation of Agriculture 600
Prochinois Et Maoïsmes En France (et Dans Les Espaces Francophones) 500
重庆市新能源汽车产业大数据招商指南(两链两图两池两库两平台两清单两报告) 400
Division and square root. Digit-recurrence algorithms and implementations 400
Offline version of the Proceedings of 15th EWTEC 2023, Bilbao 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2533244
求助须知:如何正确求助?哪些是违规求助? 2170642
关于积分的说明 5576670
捐赠科研通 1891043
什么是DOI,文献DOI怎么找? 942243
版权声明 565075
科研通“疑难数据库(出版商)”最低求助积分说明 502252