清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An improved lightweight deep neural network with knowledge distillation for local feature extraction and visual localization using images and LiDAR point clouds

点云 激光雷达 人工智能 特征提取 计算机科学 人工神经网络 萃取(化学) 模式识别(心理学) 特征(语言学) 计算机视觉 点(几何) 遥感 地理 数学 几何学 化学 色谱法 语言学 哲学
作者
Chenhui Shi,Jing Li,Jianhua Gong,Banghui Yang,Guoyong Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:184: 177-188 被引量:20
标识
DOI:10.1016/j.isprsjprs.2021.12.011
摘要

Visual localization nowadays is a research hotspot in computer vision and photogrammetry. It can provide meter level or higher localization accuracy under the conditions without GPS signals. However, achieving efficient, robust and high-accuracy visual localization under the condition of day-night changes is still challenging. To deal with this problem, we develop an improved lightweight deep neural network with knowledge distillation to efficiently extract deep local features from imagery while maintaining strong robustness for day-night visual localization. Furthermore, to further improve the accuracy of visual localization, we use aligned dense LiDAR point clouds and imagery collected by a new portable camera-LiDAR integrated device to build a prior map, and directly utilize the 2D-3D correspondences between 2D local feature points extracted by our lightweight network and 3D laser points retrieved from the prior map for localization. Moreover, we build our own ground truth point cloud dataset at 5 cm accuracy to evaluate the accuracy of the constructed prior map as well as a day-night dataset including prior map and verification data for the evaluation of the proposed visual localization method. The experimental results prove that our visual localization method achieves a balance between the efficiency and robustness while improving localization accuracy for day-night visual localization. In a comparison with a variety of state-of-the-art local feature extraction methods based on deep neural networks, our lightweight network has the least number of parameters (0.2 million) and reaches the highest feature extraction efficiency (92 frames per second), which is on par with that of the classic real-time ORB feature extraction method. Furthermore, our network remains competitive with other advanced deep local feature extraction networks in feature matching and day-night visual localization. In addition, evaluations performed on our own dataset demonstrate that our visual localization method using images and LiDAR point clouds provides a localization error of 1.2 m under the conditions of day-night changes, which is much smaller than those achieved by a state-of-the-art, purely visual localization method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
似水流年完成签到 ,获得积分10
3秒前
bc应助柔弱友菱采纳,获得50
26秒前
老石完成签到 ,获得积分10
32秒前
哭泣灯泡完成签到,获得积分10
37秒前
萨尔莫斯发布了新的文献求助10
45秒前
善学以致用应助柔弱友菱采纳,获得200
57秒前
科研通AI2S应助科研通管家采纳,获得10
59秒前
orixero应助萨尔莫斯采纳,获得10
1分钟前
yshj完成签到 ,获得积分10
1分钟前
huangzsdy完成签到,获得积分10
1分钟前
健达奇趣蛋完成签到 ,获得积分10
1分钟前
隐形曼青应助123采纳,获得10
2分钟前
2分钟前
萨尔莫斯发布了新的文献求助10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研路上互帮互助,共同进步完成签到 ,获得积分10
3分钟前
白天亮完成签到,获得积分10
3分钟前
3分钟前
123发布了新的文献求助10
3分钟前
3分钟前
mzhang2完成签到 ,获得积分10
3分钟前
科研通AI5应助116采纳,获得10
3分钟前
4分钟前
116发布了新的文献求助10
4分钟前
科研通AI5应助116采纳,获得10
4分钟前
QAZ完成签到 ,获得积分10
4分钟前
康康XY完成签到 ,获得积分10
4分钟前
萨尔莫斯完成签到,获得积分20
4分钟前
科研通AI5应助科研通管家采纳,获得20
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科目三应助科研通管家采纳,获得10
5分钟前
SciGPT应助科研通管家采纳,获得10
5分钟前
ding应助积极的凝海采纳,获得10
5分钟前
TheaGao完成签到 ,获得积分10
5分钟前
6分钟前
非洲大象完成签到,获得积分10
6分钟前
科研通AI2S应助张张采纳,获得30
6分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
乾坤侠客LW完成签到,获得积分10
7分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 520
Introduction to Strong Mixing Conditions Volumes 1-3 500
Fine Chemicals through Heterogeneous Catalysis 430
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795590
求助须知:如何正确求助?哪些是违规求助? 3340645
关于积分的说明 10300859
捐赠科研通 3057157
什么是DOI,文献DOI怎么找? 1677522
邀请新用户注册赠送积分活动 805442
科研通“疑难数据库(出版商)”最低求助积分说明 762599