Industrial Process Monitoring Based on Dynamic Overcomplete Broad Learning Network

计算机科学 过程(计算) 非线性系统 特征(语言学) 机器学习 人工智能 故障检测与隔离 断层(地质) 数据挖掘 模式识别(心理学) 语言学 哲学 物理 量子力学 地震学 执行机构 地质学 操作系统
作者
Chang Peng,Ying Xu,Hu ZhiQi
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (2): 1761-1772 被引量:4
标识
DOI:10.1109/tnnls.2022.3185167
摘要

Most industrial processes feature high nonlinearity, non-Gaussianity, and time correlation. Models based on overcomplete broad learning system (OBLS) have been successfully applied in the fault monitoring realm, which may relatively deal with the nonlinear and non-Gaussian characteristics. However, these models barely take time correlation into full consideration, hindering the further improvement of the monitoring accuracy of the network. Therefore, an effective dynamic overcomplete broad learning system (DOBLS) based on matrix extension is proposed, which extends the raw data in the batch process with the idea of "time lag" in this article. Subsequently, the OBLS monitoring network is employed to continue the analysis of the extended dynamic input data. Finally, a monitoring model is established to tackle the coexistence of nonlinearity, non-Gaussianity, and time correlation in process data. To illustrate the superiority and feasibility, the proposed model is conducted on the penicillin fermentation simulation platform, the experimental result of which illustrates that the model can extract the feature of process data more comprehensively and be self-updated more efficiently. With shorter training time and higher monitoring accuracy, the proposed model can witness an improvement of average monitoring accuracy by 3.69% and 1.26% in 26 process fault types compared to the state-of-the-art fault monitoring methods BLS and OBLS, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡雅琴完成签到,获得积分10
1秒前
李健应助摩登灰太狼采纳,获得10
1秒前
2秒前
Beyond完成签到,获得积分20
2秒前
Zhlili完成签到,获得积分10
3秒前
小二郎应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
zjc完成签到,获得积分10
4秒前
4秒前
萧湘发布了新的文献求助10
6秒前
搞怪的醉波完成签到,获得积分10
6秒前
真实的一鸣完成签到,获得积分10
6秒前
7秒前
9秒前
田一点完成签到,获得积分10
9秒前
科研通AI2S应助123采纳,获得10
11秒前
qqqq完成签到,获得积分20
11秒前
薛栋潮完成签到 ,获得积分20
12秒前
12秒前
cheng发布了新的文献求助10
12秒前
称心乐枫完成签到,获得积分10
13秒前
zcy发布了新的文献求助10
13秒前
Marcus完成签到,获得积分10
14秒前
小二郎应助高兴孤萍采纳,获得10
16秒前
16秒前
17秒前
17秒前
从容的盼晴完成签到,获得积分10
19秒前
浅色墨水完成签到,获得积分10
20秒前
共享精神应助敏感的雅绿采纳,获得10
22秒前
是榤啊完成签到,获得积分10
24秒前
肃肃其羽完成签到 ,获得积分10
29秒前
彭于晏应助Cherrita采纳,获得10
29秒前
小蘑菇应助JIANG0710采纳,获得10
31秒前
Jenny完成签到,获得积分10
31秒前
小蘑菇应助大胆怜阳采纳,获得10
31秒前
你爸爸完成签到,获得积分10
32秒前
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781413
求助须知:如何正确求助?哪些是违规求助? 3326950
关于积分的说明 10228957
捐赠科研通 3041906
什么是DOI,文献DOI怎么找? 1669672
邀请新用户注册赠送积分活动 799201
科研通“疑难数据库(出版商)”最低求助积分说明 758757