Relation-Aggregated Cross-Graph Correlation Learning for Fine-Grained Image–Text Retrieval

计算机科学 关系(数据库) 图形 人工智能 特征(语言学) 情报检索 特征学习 编码器 光学(聚焦) 模式识别(心理学) 自然语言处理 数据挖掘 理论计算机科学 操作系统 光学 物理 哲学 语言学
作者
Shu‐Juan Peng,Yi He,Xin Liu,Yiu‐ming Cheung,Xing Xu,Zhen Cui
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (2): 2194-2207 被引量:13
标识
DOI:10.1109/tnnls.2022.3188569
摘要

Fine-grained image-text retrieval has been a hot research topic to bridge the vision and languages, and its main challenge is how to learn the semantic correspondence across different modalities. The existing methods mainly focus on learning the global semantic correspondence or intramodal relation correspondence in separate data representations, but which rarely consider the intermodal relation that interactively provide complementary hints for fine-grained semantic correlation learning. To address this issue, we propose a relation-aggregated cross-graph (RACG) model to explicitly learn the fine-grained semantic correspondence by aggregating both intramodal and intermodal relations, which can be well utilized to guide the feature correspondence learning process. More specifically, we first build semantic-embedded graph to explore both fine-grained objects and their relations of different media types, which aim not only to characterize the object appearance in each modality, but also to capture the intrinsic relation information to differentiate intramodal discrepancies. Then, a cross-graph relation encoder is newly designed to explore the intermodal relation across different modalities, which can mutually boost the cross-modal correlations to learn more precise intermodal dependencies. Besides, the feature reconstruction module and multihead similarity alignment are efficiently leveraged to optimize the node-level semantic correspondence, whereby the relation-aggregated cross-modal embeddings between image and text are discriminatively obtained to benefit various image-text retrieval tasks with high retrieval performance. Extensive experiments evaluated on benchmark datasets quantitatively and qualitatively verify the advantages of the proposed framework for fine-grained image-text retrieval and show its competitive performance with the state of the arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
JC完成签到,获得积分0
2秒前
2秒前
wbh完成签到,获得积分10
2秒前
2秒前
3秒前
归尘应助现代的妍采纳,获得30
3秒前
Eternal发布了新的文献求助10
3秒前
田様应助老王采纳,获得10
4秒前
李天磊发布了新的文献求助10
4秒前
大胆诗霜完成签到,获得积分10
4秒前
lantywan完成签到,获得积分10
4秒前
111发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
lihui发布了新的文献求助10
5秒前
6秒前
6秒前
Una完成签到,获得积分10
6秒前
情怀应助黑苗采纳,获得10
7秒前
7秒前
李天磊完成签到,获得积分10
8秒前
Zoey发布了新的文献求助10
8秒前
小蘑菇应助Catherine采纳,获得10
9秒前
9秒前
大雨完成签到,获得积分10
9秒前
一念初见完成签到,获得积分10
9秒前
你猜我猜不猜你在猜完成签到,获得积分10
9秒前
Eternal完成签到,获得积分10
9秒前
yyd发布了新的文献求助10
9秒前
10秒前
10秒前
雯雯完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
笨笨的乘风完成签到 ,获得积分10
11秒前
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416714
求助须知:如何正确求助?哪些是违规求助? 4532843
关于积分的说明 14136806
捐赠科研通 4448810
什么是DOI,文献DOI怎么找? 2440430
邀请新用户注册赠送积分活动 1432238
关于科研通互助平台的介绍 1409793