亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

iACVP: markedly enhanced identification of anti-coronavirus peptides using a dataset-specific word2vec model

文字2vec 计算机科学 化学 随机森林 人工智能 机器学习 卷积神经网络 计算生物学 药物发现 数据挖掘 生物信息学 嵌入 生物
作者
Hiroyuki Kurata,Sho Tsukiyama,Balachandran Manavalan
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (4) 被引量:12
标识
DOI:10.1093/bib/bbac265
摘要

Abstract The COVID-19 pandemic caused several million deaths worldwide. Development of anti-coronavirus drugs is thus urgent. Unlike conventional non-peptide drugs, antiviral peptide drugs are highly specific, easy to synthesize and modify, and not highly susceptible to drug resistance. To reduce the time and expense involved in screening thousands of peptides and assaying their antiviral activity, computational predictors for identifying anti-coronavirus peptides (ACVPs) are needed. However, few experimentally verified ACVP samples are available, even though a relatively large number of antiviral peptides (AVPs) have been discovered. In this study, we attempted to predict ACVPs using an AVP dataset and a small collection of ACVPs. Using conventional features, a binary profile and a word-embedding word2vec (W2V), we systematically explored five different machine learning methods: Transformer, Convolutional Neural Network, bidirectional Long Short-Term Memory, Random Forest (RF) and Support Vector Machine. Via exhaustive searches, we found that the RF classifier with W2V consistently achieved better performance on different datasets. The two main controlling factors were: (i) the dataset-specific W2V dictionary was generated from the training and independent test datasets instead of the widely used general UniProt proteome and (ii) a systematic search was conducted and determined the optimal k-mer value in W2V, which provides greater discrimination between positive and negative samples. Therefore, our proposed method, named iACVP, consistently provides better prediction performance compared with existing state-of-the-art methods. To assist experimentalists in identifying putative ACVPs, we implemented our model as a web server accessible via the following link: http://kurata35.bio.kyutech.ac.jp/iACVP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明亮听枫发布了新的文献求助10
7秒前
科研通AI2S应助琳666采纳,获得10
11秒前
16秒前
搜集达人应助明亮听枫采纳,获得10
21秒前
Rui完成签到 ,获得积分10
22秒前
小蘑菇应助十三月的过客采纳,获得10
24秒前
烟花应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
30秒前
31秒前
35秒前
46秒前
用头打碟发布了新的文献求助10
51秒前
完美世界应助用头打碟采纳,获得10
58秒前
ssion完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Xiaque发布了新的文献求助10
1分钟前
洒脱完成签到,获得积分10
1分钟前
呼延水云完成签到,获得积分10
2分钟前
2分钟前
树洞发布了新的文献求助10
2分钟前
fsznc完成签到 ,获得积分0
2分钟前
科研通AI2S应助呜呜吴采纳,获得10
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
2分钟前
树洞驳回了ding应助
2分钟前
2分钟前
会飞的流氓兔完成签到 ,获得积分10
2分钟前
刘振坤发布了新的文献求助10
2分钟前
zzcres完成签到,获得积分10
2分钟前
SciGPT应助紫荆采纳,获得10
3分钟前
NLJY完成签到,获得积分10
3分钟前
3分钟前
3分钟前
紫荆发布了新的文献求助10
3分钟前
紫荆完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926142
求助须知:如何正确求助?哪些是违规求助? 4196105
关于积分的说明 13031771
捐赠科研通 3967938
什么是DOI,文献DOI怎么找? 2174788
邀请新用户注册赠送积分活动 1191981
关于科研通互助平台的介绍 1101960