Primary hyperparathyroidism, a machine learning approach to identify multiglandular disease in patients with a single adenoma found at preoperative Sestamibi-SPECT/CT

原发性甲状旁腺功能亢进 医学 甲状旁腺功能亢进 甲状旁腺切除术 腺瘤 接收机工作特性 放射科 甲状旁腺激素 内科学 泌尿科
作者
Patricia Sandqvist,Anders Sundin,Inga‐Lena Nilsson,Per Grybäck,Alejandro Sanchez‐Crespo
出处
期刊:European journal of endocrinology [Oxford University Press]
卷期号:187 (2): 257-263 被引量:8
标识
DOI:10.1530/eje-22-0206
摘要

Successful preoperative image localisation of all parathyroid adenomas (PTA) in patients with primary hyperparathyroidism (pHPT) and multiglandular disease (MGD) remains challenging. We investigate whether a machine learning classifier (MLC) could predict the presence of overlooked PTA at preoperative localisation with 99mTc-Sestamibi-SPECT/CT in MGD patients.This study is a retrospective study from a single tertiary referral hospital initially including 349 patients with biochemically confirmed pHPT and cured after surgical parathyroidectomy.A classification ensemble of decision trees with Bayesian hyperparameter optimisation and five-fold cross-validation was trained with six predictor variables: the preoperative plasma concentrations of parathyroid hormone, total calcium and thyroid-stimulating hormone, the serum concentration of ionised calcium, the 24-h urine calcium and the histopathological weight of the localised PTA at imaging. Two response classes were defined: patients with single-gland disease (SGD) correctly localised at imaging and MGD patients in whom only one PTA was localised on imaging. The data set was split into 70% for training and 30% for testing. The MLC was also tested on a subset of the original data based on CT image-derived PTA weights.The MLC achieved an overall accuracy at validation of 90% with an area under the cross-validation receiver operating characteristic curve of 0.9. On test data, the MLC reached a 72% true-positive prediction rate for MGD patients and a misclassification rate of 6% for SGD patients. Similar results were obtained in the testing set with image-derived PTA weight.Artificial intelligence can aid in identifying patients with MGD for whom 99mTc-Sestamibi-SPECT/CT failed to visualise all PTAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MIA903发布了新的文献求助30
刚刚
沈随便完成签到,获得积分10
刚刚
科研通AI5应助右右采纳,获得10
1秒前
糜厉完成签到,获得积分10
1秒前
小伍同学完成签到,获得积分10
1秒前
sansan完成签到 ,获得积分10
1秒前
H丶化羽发布了新的文献求助30
2秒前
XM完成签到,获得积分10
2秒前
Jocd完成签到,获得积分10
3秒前
3秒前
紫愿完成签到 ,获得积分10
3秒前
4秒前
追逐的疯完成签到,获得积分10
4秒前
精明觅山完成签到,获得积分10
5秒前
大吴克发布了新的文献求助10
5秒前
6秒前
zdw完成签到,获得积分10
6秒前
房LY完成签到,获得积分10
6秒前
一一应助还是白米饭采纳,获得10
7秒前
星星完成签到,获得积分10
7秒前
Jaylen完成签到,获得积分10
7秒前
星河梦枕完成签到,获得积分10
8秒前
哈尼发布了新的文献求助10
8秒前
happy发布了新的文献求助10
8秒前
MCS发布了新的文献求助10
10秒前
decademe完成签到,获得积分10
10秒前
LPL完成签到,获得积分10
11秒前
木雨亦潇潇完成签到,获得积分10
11秒前
自然代亦完成签到 ,获得积分10
11秒前
11秒前
bc应助李天王采纳,获得20
12秒前
轩辕远航完成签到 ,获得积分10
12秒前
13秒前
点看世界完成签到,获得积分10
13秒前
13秒前
Jenkin完成签到,获得积分10
13秒前
14秒前
无奈若雁完成签到,获得积分10
14秒前
ccccc发布了新的文献求助10
15秒前
hiten完成签到,获得积分10
15秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
The Oxford Handbook of Video Game Music and Sound 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827518
求助须知:如何正确求助?哪些是违规求助? 3369790
关于积分的说明 10457969
捐赠科研通 3089470
什么是DOI,文献DOI怎么找? 1699905
邀请新用户注册赠送积分活动 817560
科研通“疑难数据库(出版商)”最低求助积分说明 770263