Multi-step-ahead stock price index forecasting using long short-term memory model with multivariate empirical mode decomposition

计算机科学 股票市场指数 超参数 计量经济学 证券交易所 水准点(测量) 多元统计 库存(枪支) 索引(排版) 股票市场 人工智能 机器学习 财务 经济 万维网 工程类 生物 机械工程 古生物学 大地测量学 地理
作者
Changrui Deng,Yanmei Huang,Najmul Hasan,Yukun Bao
出处
期刊:Information Sciences [Elsevier BV]
卷期号:607: 297-321 被引量:58
标识
DOI:10.1016/j.ins.2022.05.088
摘要

Accurate and reliable multi-step-ahead forecasting of stock price indexes over long-term future trends is challenging for capital investors and decision-makers. This study developed a hybrid stock price index forecasting modelling framework using Long Short-Term Memory (LSTM) with Multivariate Empirical Mode Decomposition (MEMD), which can capture the inherent features of the complex dynamics of stock price index time series. In conjunction with time–frequency analysis and deep learning algorithms, the proposed modelling framework implemented multi-step-ahead forecasting for stock price indexes using a multiple-input multiple-output (MIMO) strategy, where MEMD was first employed to simultaneously decompose the relevant features of the stock price index. Then LSTM was used to train the forecasting model by using the components extracted by MEMD and performing multi-step-ahead forecasting of the closing price of the stock price index. The hyperparameters of the LSTM model were optimized using an orthogonal array tuning method (OATM) based on the Taguchi design of experiments for enhancing the performance of prediction. Three real-world datasets were used for model validation from three exchange markets including Standard & Poor 500 index (SPX), Shanghai Stock Exchange (SSE), and Hang Seng Index (HSI). The results of the experiments suggested that the proposed hybrid model outperforms the benchmark models and improves the accuracy of multi-step-ahead forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小蘑菇应助Anan采纳,获得10
2秒前
材料若饥完成签到,获得积分10
3秒前
3秒前
充电宝应助xiechangshan采纳,获得10
4秒前
认真的忆文完成签到,获得积分10
4秒前
6秒前
千年雪松完成签到,获得积分10
6秒前
wlj完成签到 ,获得积分10
7秒前
8秒前
细心蚂蚁发布了新的文献求助10
9秒前
CipherSage应助杨大夫采纳,获得10
9秒前
9秒前
For_winter完成签到,获得积分10
9秒前
10秒前
小天狼星应助科研通管家采纳,获得10
10秒前
1+1应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得30
10秒前
大模型应助科研通管家采纳,获得10
10秒前
1+1应助科研通管家采纳,获得10
10秒前
Guobingchen应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
1+1应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
1+1应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
ding应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
ding应助科研通管家采纳,获得30
12秒前
12秒前
1+1应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671619
求助须知:如何正确求助?哪些是违规求助? 3228325
关于积分的说明 9779523
捐赠科研通 2938636
什么是DOI,文献DOI怎么找? 1610158
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093