An experimental study on visual tracking based on deep learning

计算机科学 人工智能 眼动 跟踪(教育) 计算机视觉 视频跟踪 深度学习 对象(语法) 匹配(统计) 特征(语言学) 过程(计算) 跟踪系统 光学(聚焦) 卷积神经网络 卡尔曼滤波器 数学 心理学 教育学 语言学 统计 哲学 物理 光学 操作系统
作者
Krishna Mohan A,Reddy PVN,K. Satya Prasad
标识
DOI:10.1108/ijius-08-2021-0089
摘要

Purpose In the community of visual tracking or object tracking, discriminatively learned correlation filter (DCF) has gained more importance. When it comes to speed, DCF gives the best performance. The main objective of this study is to anticipate the object visually. For tracking the object visually, the authors proposed a new model based on the convolutional regression technique. Features like HOG & Harris are used for the process of feature extraction. The proposed method will give the best results when compared to other existing methods. Design/methodology/approach This paper introduces the concept and research status of tracks; later the authors focus on the representative applications of deep learning in visual tracking. Findings Better tracking algorithms are not mentioned in the existing method. Research limitations/implications Visual tracking is the ability to control eye movements using the oculomotor system (vision and eye muscles working together). Visual tracking plays an important role when it comes to identifying an object and matching it with the database images. In visual tracking, deep learning has achieved great success. Practical implications The authors implement the multiple tracking methods, for better tracking purpose. Originality/value The main theme of this paper is to review the state-of-the-art tracking methods depending on deep learning. First, we introduce the visual tracking that is carried out manually, and secondly, we studied different existing methods of visual tracking based on deep learning. For every paper, we explained the analysis and drawbacks of that tracking method. This paper introduces the concept and research status of tracks, later we focus on the representative applications of deep learning in visual tracking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
skycool完成签到,获得积分10
刚刚
浮游应助科研通管家采纳,获得10
3秒前
changping应助科研通管家采纳,获得10
3秒前
3秒前
NexusExplorer应助科研通管家采纳,获得30
3秒前
英姑应助科研通管家采纳,获得30
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
科研通AI2S应助Moment采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
烟花应助Li采纳,获得10
4秒前
星辰大海应助YSL采纳,获得10
5秒前
6秒前
7秒前
SciGPT应助曼丽新波采纳,获得10
7秒前
YCYycy完成签到,获得积分10
8秒前
9秒前
饼干小子发布了新的文献求助10
10秒前
Pendragon完成签到,获得积分10
11秒前
12秒前
从容果汁完成签到 ,获得积分10
12秒前
今后应助基2采纳,获得10
12秒前
13秒前
大个应助dpk采纳,获得10
13秒前
彭于晏应助wop111采纳,获得10
13秒前
13秒前
领导范儿应助zjtttt采纳,获得10
15秒前
FashionBoy应助活力的果汁采纳,获得10
16秒前
16秒前
16秒前
HMONEY发布了新的文献求助10
17秒前
17秒前
Moment发布了新的文献求助10
19秒前
19秒前
lu完成签到,获得积分10
19秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5214488
求助须知:如何正确求助?哪些是违规求助? 4390027
关于积分的说明 13668448
捐赠科研通 4251405
什么是DOI,文献DOI怎么找? 2332608
邀请新用户注册赠送积分活动 1330251
关于科研通互助平台的介绍 1283950