Adaptive pixelwise inference multi-view stereo

基本事实 人工智能 计算机科学 推论 相似性(几何) 像素 计算机视觉 亚像素渲染 管道(软件) 匹配(统计) 模式识别(心理学) 算法 图像(数学) 数学 统计 程序设计语言
作者
Shang Sun,Junjie Liu,Yuanzhuo Li,Haocong Ying,Zhongguan Zhai,Yurui Mou
标识
DOI:10.1117/12.2623392
摘要

Multi-View Stereo (MVS) is a technology that reconstructs the three-dimensional structure of objects or scenes through 2D images and camera parameters. PatchMatch based MVS methods are widely used nowadays. However, these algorithms have two weaknesses: cross-correlation based similarity measurement methods becoming ineffective on regions that are texture-less (e.g. white wall) or have stochastic textures (e.g. grass), as the similarity measurement method such as NCC could not perform well on these regions; Sometimes, the reconstructed result may be stuck into global optimal which heavily drifts from the ground truth because of noise, occlusion and etc. To tackle these issues, we present an MVS pipeline called Adaptive Pixelwise Inference Multi-View Stereo (API-MVS). First, a strategy is proposed to adaptively infer the matching window sizes of each pixel, making the reconstructed results on texture-less or stochastic texture regions have a better trade-off between accuracy and completeness. Second, a new cost function is proposed to integrate the matching cost values computed using different neighboring images, and experiments confirmed that the cost function we used can make locally optimized results closer to the ground truth. We have tested our algorithm on ETH3D benchmarks. The result shows the effectiveness of our method, and it is comparable to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘉木发布了新的文献求助10
刚刚
1秒前
星星收藏家完成签到,获得积分10
2秒前
邢慧兰发布了新的文献求助10
2秒前
大个应助parpate采纳,获得10
3秒前
3秒前
panjunlu发布了新的文献求助10
3秒前
3秒前
小陈完成签到,获得积分10
4秒前
李健应助士心采纳,获得10
4秒前
4秒前
Eason完成签到,获得积分10
6秒前
6秒前
陈陈发布了新的文献求助10
7秒前
sunlight完成签到,获得积分10
8秒前
shilang完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
搬砖完成签到,获得积分10
13秒前
祝贺盒子完成签到,获得积分10
13秒前
parpate发布了新的文献求助10
13秒前
13秒前
悲凉的梦易完成签到,获得积分20
14秒前
15秒前
大宝发布了新的文献求助10
15秒前
QDU关闭了QDU文献求助
15秒前
天台飞船发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
18秒前
林瓜瓜发布了新的文献求助10
18秒前
227完成签到,获得积分10
19秒前
笑点低易真完成签到,获得积分10
19秒前
吴晓敏完成签到,获得积分10
19秒前
张美超发布了新的文献求助10
20秒前
22秒前
桐桐应助邢慧兰采纳,获得10
22秒前
lilacs应助星湖采纳,获得10
23秒前
orixero应助星湖采纳,获得80
23秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867343
求助须知:如何正确求助?哪些是违规求助? 3409640
关于积分的说明 10664507
捐赠科研通 3133927
什么是DOI,文献DOI怎么找? 1728591
邀请新用户注册赠送积分活动 833038
科研通“疑难数据库(出版商)”最低求助积分说明 780517