Fabric defect classification using prototypical network of few-shot learning algorithm

判别式 计算机科学 集合(抽象数据类型) 卷积神经网络 人工智能 班级(哲学) 人工神经网络 模式识别(心理学) 一级分类 功能(生物学) 代表(政治) 数据挖掘 一次性 机器学习 训练集 支持向量机 工程类 生物 政治 机械工程 进化生物学 政治学 程序设计语言 法学
作者
Zhu Zhan,Jinfeng Zhou,Bugao Xu
出处
期刊:Computers in Industry [Elsevier BV]
卷期号:138: 103628-103628 被引量:30
标识
DOI:10.1016/j.compind.2022.103628
摘要

Computer-vision technology plays a vital role in automated fabric defect classification. In this paper, a novel prototypical network is presented for improving the fabric defect classification performance, especially in the case of an imbalanced distribution over the number of class samples. A traditional neural network (such as a convolutional neural network) usually inputs a batch of samples each time in training until the entire training dataset is covered, and thus it is not robust to cope with imbalanced data. The proposed network follows an N-way K-shot paradigm to split the training set into a support set and query set, and thereby forces the number of samples within each class to be uniformly distributed. The support set is used to learn the common knowledge of each class, whereas the query set is utilized to fine-tune the model parameters gained from the respective support set. The prototype of each class in the support set is computed as the representation of the class. For samples in the query set, the loss function is designed to match them with the corresponding prototypes as accurately as possible. In addition, the class activation mapping is used to visualize and interpret the discriminative regions of interest most relevant to specific defect classes. The classification performance of the proposed method is tested against five existing models on a labeled dataset of fabric defect images collected by a commercial inspection system. The proposed method achieves the highest classification accuracy (96.04%) over seven defect categories among the six tested methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞怪文轩发布了新的文献求助10
刚刚
刚刚
科研通AI5应助开朗忆曼采纳,获得10
1秒前
鼻涕泡发布了新的文献求助10
3秒前
3秒前
3秒前
陈槊诸发布了新的文献求助10
5秒前
所所应助甜美的梦旋采纳,获得10
6秒前
搞怪依波关注了科研通微信公众号
6秒前
小h发布了新的文献求助10
8秒前
FashionBoy应助kytm采纳,获得30
12秒前
学术牛马关注了科研通微信公众号
12秒前
13秒前
14秒前
15秒前
16秒前
Cherry关注了科研通微信公众号
17秒前
17秒前
赘婿应助冷静的小之采纳,获得10
18秒前
18秒前
迷路冥幽发布了新的文献求助10
19秒前
19秒前
时尚的冰棍儿完成签到 ,获得积分10
20秒前
鼻涕泡发布了新的文献求助10
20秒前
就叫柠檬吧完成签到 ,获得积分10
20秒前
熊猫侠发布了新的文献求助10
21秒前
21秒前
西柚完成签到,获得积分10
21秒前
21秒前
24秒前
24秒前
搞怪依波发布了新的文献求助10
25秒前
沉默吐司应助小h采纳,获得10
26秒前
沉默吐司应助小h采纳,获得10
26秒前
27秒前
lmz发布了新的文献求助10
28秒前
28秒前
jacs111发布了新的文献求助10
28秒前
29秒前
逍遥完成签到,获得积分10
30秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815163
求助须知:如何正确求助?哪些是违规求助? 3359128
关于积分的说明 10400112
捐赠科研通 3076704
什么是DOI,文献DOI怎么找? 1689971
邀请新用户注册赠送积分活动 813466
科研通“疑难数据库(出版商)”最低求助积分说明 767673