Interpretable wind speed prediction with multivariate time series and temporal fusion transformers

可解释性 风速 风力发电 计算机科学 单变量 时间范围 时间序列 数据挖掘 机器学习 人工智能 多元统计 工程类 数学优化 气象学 数学 物理 电气工程
作者
Binrong Wu,Lin Wang,Yu‐Rong Zeng
出处
期刊:Energy [Elsevier BV]
卷期号:252: 123990-123990 被引量:147
标识
DOI:10.1016/j.energy.2022.123990
摘要

Wind power has been utilized well in power systems, so steady and successful wind speed forecasting is crucial to security management power grid market economy. To date, most researchers have often discounted the interpretability of prediction models, leading to obscure forecasts. This study puts forward a unique forecasting methodology that incorporates notable decomposition techniques, multifactor interpretable forecasting models, and optimization algorithms. In the proposed model, variational mode decomposition is employed to break down the raw wind speed sequence into a set of intrinsic mode functions. Adaptive differential evolution is then used for optimizing several parameters of temporal fusion transformers (TFT) to achieve satisfactory forecasting performance. TFT is a new attention-based deep learning model that puts together high-performance multi-horizon prediction and interpretable insights into temporal dynamics. Empirical studies using eight real-world 1-h wind speed data sets in Albert, Canada, and Five Points, USA demonstrate that the system using the proposed model outperforms those employing other comparable models in nearly all performance metrics. Examples of TFT's interpretable outputs are the importance ranking of the decomposed wind speed sub-sequences and meteorological data and attention analysis of different step lengths. The findings signify substantial progress for wind speed prediction and aid policymakers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiaoxiao应助fangzh采纳,获得10
刚刚
桂桂阿云发布了新的文献求助10
1秒前
betterme完成签到,获得积分10
1秒前
ll完成签到 ,获得积分10
1秒前
不安的蜡烛完成签到,获得积分20
1秒前
JamesPei应助清风采纳,获得10
1秒前
临时演员完成签到,获得积分0
1秒前
Vicki完成签到,获得积分10
1秒前
小菜鸟001完成签到,获得积分0
2秒前
3秒前
情殇完成签到,获得积分20
3秒前
论文多多完成签到,获得积分10
3秒前
Billy应助xzw采纳,获得30
5秒前
悄悄是心上的肖肖完成签到 ,获得积分10
5秒前
5秒前
许甜甜鸭应助bigpluto采纳,获得10
5秒前
yancong_219完成签到,获得积分10
6秒前
GLZ6984完成签到,获得积分10
6秒前
8秒前
wangrblzu应助小小小冲冲冲采纳,获得10
9秒前
9秒前
9秒前
恐龙完成签到 ,获得积分10
11秒前
平常的毛豆应助Hollen采纳,获得30
11秒前
ww完成签到,获得积分10
12秒前
qinghong发布了新的文献求助10
12秒前
丘比特应助One采纳,获得10
13秒前
huco完成签到,获得积分10
14秒前
二硫碘化钾完成签到,获得积分10
14秒前
Maor完成签到,获得积分0
14秒前
14秒前
Silence完成签到,获得积分10
14秒前
科研通AI5应助半人采纳,获得10
14秒前
高高雨寒完成签到 ,获得积分10
15秒前
雾影觅光完成签到,获得积分10
15秒前
en完成签到,获得积分10
15秒前
15秒前
蔓蔓完成签到 ,获得积分10
16秒前
02发布了新的文献求助10
16秒前
整齐路灯完成签到,获得积分10
16秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Selenium in ruminant nutrition and health 200
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837710
求助须知:如何正确求助?哪些是违规求助? 3379786
关于积分的说明 10510752
捐赠科研通 3099411
什么是DOI,文献DOI怎么找? 1707090
邀请新用户注册赠送积分活动 821427
科研通“疑难数据库(出版商)”最低求助积分说明 772617