清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Artificial intelligence techniques for prediction of drug synergy in malignant diseases: Past, present, and future

计算机科学 人工智能 药物开发 风险分析(工程) 数据科学 机器学习 药品 医学 药理学
作者
Pooja Rani,Kamlesh Dutta,Vijay Kumar
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:144: 105334-105334 被引量:7
标识
DOI:10.1016/j.compbiomed.2022.105334
摘要

In recent years, there has been a surge of interest in the application and acceptance of Artificial Intelligence for challenges involving development, design, and prediction. Artificial Intelligence has not only changed the way we see the world, but it has also offered up new avenues for solving problems. This has been made possible by advances in technology, the availability of large amounts of data generated in various formats, the availability of increasing computational capacity in the form of GPUs and TPUs, and the reduction of costs. The advantages of applying AI in medicine have long been recognized, backed up by ongoing research from numerous institutes, hospitals, and pharmaceutical companies. Drug synergy prediction in malignant diseases is one example of a problem domain that has benefited considerably from AI breakthroughs. Traditionally, finding synergistic drug combinations for malignant diseases by experimental methods has had little success, as promising outcomes may be obtained during trials but may not be achieved during actual treatment due to the development of drug resistance over time. Experimental techniques can only be used for a restricted number of drugs because they are time demanding and expensive. Screening all necessary drug combinations is impractical due to limited resources. The goal of this research is to look at the past, present, and future of AI applications, with an emphasis on drug synergy prediction in malignant diseases using deep learning models. The benefits of utilizing AI to forecast drug synergy are discussed in this paper, as well as future research directions and challenges for applying AI techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助supermaltose采纳,获得10
2秒前
yi完成签到,获得积分10
58秒前
斯文的天奇完成签到 ,获得积分10
1分钟前
nav完成签到 ,获得积分10
1分钟前
jkaaa完成签到,获得积分10
2分钟前
xiaolang2004完成签到,获得积分10
2分钟前
hanspro完成签到,获得积分10
2分钟前
hanspro发布了新的文献求助10
2分钟前
李振博完成签到 ,获得积分10
3分钟前
kingcoffee完成签到 ,获得积分10
3分钟前
美好灵寒完成签到 ,获得积分10
5分钟前
binyao2024完成签到,获得积分10
5分钟前
欣欣完成签到 ,获得积分10
5分钟前
尹静涵完成签到 ,获得积分10
6分钟前
宇文非笑完成签到 ,获得积分0
6分钟前
田様应助XX采纳,获得10
6分钟前
naczx完成签到,获得积分0
7分钟前
戚雅柔完成签到 ,获得积分10
8分钟前
muriel完成签到,获得积分10
8分钟前
efren1806完成签到,获得积分10
8分钟前
cugwzr完成签到,获得积分10
9分钟前
qqJing完成签到,获得积分10
10分钟前
阿狸完成签到 ,获得积分10
11分钟前
12分钟前
12分钟前
碗碗豆喵完成签到 ,获得积分10
12分钟前
12分钟前
mengliu完成签到,获得积分10
12分钟前
12分钟前
13分钟前
迷茫的一代完成签到,获得积分10
14分钟前
Jasper应助善良的剑通采纳,获得30
14分钟前
15分钟前
supermaltose发布了新的文献求助10
15分钟前
supermaltose完成签到,获得积分10
15分钟前
Spring完成签到,获得积分10
16分钟前
16分钟前
Zer完成签到,获得积分10
16分钟前
16分钟前
123完成签到,获得积分10
16分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780853
求助须知:如何正确求助?哪些是违规求助? 3326349
关于积分的说明 10226633
捐赠科研通 3041518
什么是DOI,文献DOI怎么找? 1669502
邀请新用户注册赠送积分活动 799068
科研通“疑难数据库(出版商)”最低求助积分说明 758732