Predicting liner wear of ball mills using discrete element method and artificial neural network

磨坊 球磨机 离散元法 人工神经网络 工程类 机械工程 工艺工程 球(数学) 研磨 结构工程 材料科学 冶金 计算机科学 机械 数学 机器学习 数学分析 物理
作者
C.T. Jayasundara,Haiping Zhu
出处
期刊:Chemical Engineering Research & Design [Elsevier BV]
卷期号:182: 438-447 被引量:8
标识
DOI:10.1016/j.cherd.2022.04.013
摘要

Mill component wear is a critical issue in industrial grinding mills as it affects mill’s continuous operation and performance and causes a considerable cost to replace worn parts. Understanding wear profile and its effects on mill performance would provide useful insight for process optimisation. In this work, an approach based on the Discrete Element Method (DEM) and data driven machine learning model has been proposed to predict the liner wear profile of ball mills. DEM simulations based on a small scaled experimental setup were carried out to examine the relationship between liner wear energy and the input features such as the location of the point considered on the liner, the ratio of particle size to mesh element size and energy distribution over the wear profile. Then the machine learning model for wear parameter was developed. The comparison between the actual and predicted wear parameters for the test data showed a correlation coefficient of about 0.95 and an accuracy of 93% with the desired outcomes. The predicted liner wear profiles at different times for the mill were similar to the ones obtained by the experiment. The approach proposed was finally applied to a large industrial mill with a diameter of 4.267 m. It was shown that only five intermediate simulations were needed to determine a liner wear profile of the mill close to that from field data after 57,726 h of operation. The results obtained in this study indicate that combining neural networks with the DEM provides a promising technique in developing wear models for industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bebeans应助melody6156采纳,获得100
刚刚
刚刚
九九发布了新的文献求助10
1秒前
JamesPei应助汽水采纳,获得10
2秒前
cai'e完成签到,获得积分10
4秒前
情怀应助lieditongxu采纳,获得20
5秒前
5秒前
科研通AI5应助woody采纳,获得10
6秒前
8秒前
9秒前
pantio完成签到,获得积分10
9秒前
尚永婧发布了新的文献求助10
10秒前
活泼的嚓茶完成签到,获得积分20
10秒前
drleslie完成签到 ,获得积分10
10秒前
11秒前
11秒前
skw发布了新的文献求助10
11秒前
平淡书包关注了科研通微信公众号
11秒前
小懒猪完成签到,获得积分10
12秒前
12秒前
13秒前
自由的代丝完成签到 ,获得积分10
13秒前
15秒前
汽水发布了新的文献求助10
15秒前
liam发布了新的文献求助10
15秒前
受伤纲发布了新的文献求助10
15秒前
16秒前
lieditongxu发布了新的文献求助20
16秒前
扶余山本发布了新的文献求助10
17秒前
巨炮叔叔完成签到,获得积分10
17秒前
爆米花应助An2ni0采纳,获得10
17秒前
碳酸芙兰发布了新的文献求助10
18秒前
ljh完成签到 ,获得积分10
19秒前
20秒前
猫仔完成签到,获得积分10
21秒前
有魅力山雁完成签到,获得积分20
21秒前
民科王聪完成签到,获得积分10
21秒前
科研通AI5应助YangSihan采纳,获得10
23秒前
彭于晏应助Eternity采纳,获得10
23秒前
英姑应助科研通管家采纳,获得20
24秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842679
求助须知:如何正确求助?哪些是违规求助? 3384676
关于积分的说明 10536789
捐赠科研通 3105234
什么是DOI,文献DOI怎么找? 1710162
邀请新用户注册赠送积分活动 823493
科研通“疑难数据库(出版商)”最低求助积分说明 774110