亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Redundancy and Attention in Convolutional LSTM for Gesture Recognition

冗余(工程) 计算机科学 人工智能 语音识别 卷积神经网络 模式识别(心理学) 手势识别 自然语言处理 手势 操作系统
作者
Guangming Zhu,Liang Zhang,Lu Yang,Lin Mei,Syed Afaq Ali Shah,Mohammed Bennamoun,Peiyi Shen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (4): 1323-1335 被引量:76
标识
DOI:10.1109/tnnls.2019.2919764
摘要

Convolutional long short-term memory (ConvLSTM) networks have been widely used for action/gesture recognition, and different attention mechanisms have also been embedded into ConvLSTM networks. This paper explores the redundancy of spatial convolutions and the effects of the attention mechanism in ConvLSTM, based on our previous gesture recognition architectures that combine the 3-D convolutional neural network (CNN) and ConvLSTM. Depthwise separable, group, and shuffle convolutions are used to replace the convolutional structures in ConvLSTM for the redundancy analysis. In addition, four ConvLSTM variants are derived for attention analysis: 1) by removing the convolutional structures of the three gates in ConvLSTM; 2) by applying the attention mechanism on the ConvLSTM input; and 3) by reconstructing the input and 4) output gates with the modified channelwise attention mechanism. Evaluation results demonstrate that the spatial convolutions in the three gates scarcely contribute to the spatiotemporal feature fusion and that the attention mechanisms embedded into the input and output gates cannot improve the feature fusion. In other words, ConvLSTM mainly contributes to the temporal fusion along with the recurrent steps to learn long-term spatiotemporal features when taking spatial or spatiotemporal features as input. A new LSTM variant is derived on this basis in which the convolutional structures are embedded only into the input-to-state transition of LSTM. The code of the LSTM variants is publicly available.\footnotehttps://github.com/GuangmingZhu/ConvLSTMForGR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助Chavin采纳,获得10
3秒前
陶醉迎彤发布了新的文献求助30
7秒前
29秒前
31秒前
33秒前
ahhah发布了新的文献求助10
33秒前
赘婿应助诚心的觅风采纳,获得10
35秒前
37秒前
li完成签到 ,获得积分10
41秒前
STANDBY发布了新的文献求助10
43秒前
木可完成签到 ,获得积分10
45秒前
Owen应助WANWAN采纳,获得10
45秒前
48秒前
Viiigo完成签到,获得积分10
49秒前
daizao发布了新的文献求助10
51秒前
53秒前
穿云小蓝鲸完成签到,获得积分10
54秒前
57秒前
WANWAN发布了新的文献求助10
59秒前
瓜瓜完成签到,获得积分20
1分钟前
赘婿应助曲淳采纳,获得10
1分钟前
1分钟前
1分钟前
喂我完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
木有完成签到 ,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得20
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
tuanheqi应助科研通管家采纳,获得150
1分钟前
1分钟前
李程阳完成签到 ,获得积分10
1分钟前
STANDBY完成签到,获得积分10
1分钟前
852应助ahhah采纳,获得10
1分钟前
闵凝竹完成签到 ,获得积分0
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301944
求助须知:如何正确求助?哪些是违规求助? 4449309
关于积分的说明 13848145
捐赠科研通 4335449
什么是DOI,文献DOI怎么找? 2380300
邀请新用户注册赠送积分活动 1375305
关于科研通互助平台的介绍 1341402