人工智能
计算机科学
管道(软件)
脱模
计算机视觉
JPEG格式
端到端原则
图像处理
图像质量
降噪
深度学习
图像(数学)
彩色图像
程序设计语言
作者
Eli Schwartz,Raja Giryes,Alex Bronstein
标识
DOI:10.1109/tip.2018.2872858
摘要
We present DeepISP, a full end-to-end deep neural model of the camera image signal processing (ISP) pipeline. Our model learns a mapping from the raw low-light mosaiced image to the final visually compelling image and encompasses low-level tasks such as demosaicing and denoising as well as higher-level tasks such as color correction and image adjustment. The training and evaluation of the pipeline were performed on a dedicated dataset containing pairs of low-light and well-lit images captured by a Samsung S7 smartphone camera in both raw and processed JPEG formats. The proposed solution achieves state-of-the-art performance in objective evaluation of PSNR on the subtask of joint denoising and demosaicing. For the full end-to-end pipeline, it achieves better visual quality compared to the manufacturer ISP, in both a subjective human assessment and when rated by a deep model trained for assessing image quality.
科研通智能强力驱动
Strongly Powered by AbleSci AI