材料科学
织物
复合材料
热舒适性
被动冷却
小气候
织物结构
传热
电子设备和系统的热管理
热的
工程类
环境科学
机械工程
气象学
物理
热力学
考古
历史
作者
Kun Fu,Zhi Yang,Yong Pei,Yongxin Wang,Beibei Xu,YuHuang Wang,Bao Yang,Liangbing Hu
标识
DOI:10.1007/s42765-019-0003-y
摘要
Thermal management of textiles requires local microclimate control over heat and wet dissipation to create a comfortable thermal-wet environment at the interface of the human body and clothing. Herein, we design a fabric capable of both sweat- and cooling-management using a knitted fabric featuring a bilayer structure consisting of hydrophobic polyethylene terephthalate and hydrophilic cellulose fibers to simultaneously achieve high infrared (IR) transmittance and good thermal-wet comfort. The IR transmission of this cooling textile increased by ~ twofold in the dry state and ~ eightfold in the wet state compared to conventional cotton fabric. When the porosity changes from 10 to 47% with the comparison of conventional cotton fabric and our cooling textile, the heat flux is increased from 74.4 to 152.3 W/cm2. The cooling effect of the cooling fabric is 105% greater than that of commercial cotton fabric, which displays a better thermal management capacity for personal cooling. This bilayer design controls fast moisture transfer from inside out and provides thermal management, demonstrating high impact not only for garments, but also for other systems requiring heat regulation, such as buildings, which could mitigate energy demand and ultimately contribute to the relief of global energy and climate issues.
科研通智能强力驱动
Strongly Powered by AbleSci AI