Confronting the Challenges of Next‐Generation Silicon Anode‐Based Lithium‐Ion Batteries: Role of Designer Electrolyte Additives and Polymeric Binders

阳极 电解质 锂(药物) 材料科学 纳米技术 可再生能源 储能 工艺工程 工程物理 电极 电气工程 化学 冶金 功率(物理) 工程类 物理 内分泌学 物理化学 医学 量子力学
作者
Gebrekidan Gebresilassie Eshetu,Egbert Figgemeier
出处
期刊:Chemsuschem [Wiley]
卷期号:12 (12): 2515-2539 被引量:224
标识
DOI:10.1002/cssc.201900209
摘要

Abstract Silicon has emerged as the next‐generation anode material for high‐capacity lithium‐ion batteries (LIBs). It is currently of scientific and practical interest to encounter increasingly growing demands for high energy/power density electrochemical energy‐storage devices for use in electric vehicles (xEVs), renewable energy sources, and smart grid/utility applications. Improvements to existing conventional LIBs are required to provide higher energy, longer cycle lives. This is attributed to its unparalleled theoretical capacity (4200 mAh g −1 for Li 4.4 Si), which is approximately 10 times higher than that of a state‐of‐the‐art graphitic anode (372 mAh g −1 for LiC 6 ), with a suitable operating voltage, natural abundance, environmental benignity, nontoxicity, high safety, and so forth. However, despite the overwhelming beneficial features, the practical integration of LIBs containing a silicon anode beyond the commercial niche is hampered by unavoidable challenges, such as excessive volume changes during the (de‐)alloying process, inherently low electrical and ionic conductivities, an unstable solid–electrolyte interphase, and electrolyte drying out. Among various extenuating strategies, non‐electrode factors encompassing electrolyte additives and polymeric binders are regarded as the most economical, and effective approaches towards circumventing these disadvantages are in short supply. With the aim of providing an in‐depth insight into rapidly growing accounts of electrolyte additives and binders for use with silicon anode‐based LIBs, this Review assesses the current state of the art of research and thereby examines opportunities to open up new avenues for the practical realization of these silicon anode‐based LIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助胡胡采纳,获得10
刚刚
坤坤发布了新的文献求助10
1秒前
yuan发布了新的文献求助10
1秒前
朱滨松完成签到,获得积分20
3秒前
Orange应助zch19970203采纳,获得10
3秒前
慕青应助科研通管家采纳,获得30
4秒前
雪满头应助科研通管家采纳,获得10
4秒前
唐泽雪穗应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
唐泽雪穗应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
丘比特应助Freya采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
雪满头应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
英姑应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得30
5秒前
CodeCraft应助科研通管家采纳,获得30
6秒前
田様应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得15
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
隐形曼青应助老广采纳,获得10
6秒前
8秒前
smujj发布了新的文献求助10
8秒前
桐桐应助吴彦祖采纳,获得10
9秒前
CodeCraft应助药石无医采纳,获得10
10秒前
JamesPei应助川不辞盈采纳,获得20
10秒前
万能图书馆应助吴逸彪采纳,获得10
11秒前
情怀应助wangsiheng采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4726855
求助须知:如何正确求助?哪些是违规求助? 4083863
关于积分的说明 12630316
捐赠科研通 3790325
什么是DOI,文献DOI怎么找? 2093232
邀请新用户注册赠送积分活动 1119016
科研通“疑难数据库(出版商)”最低求助积分说明 995377