子宫
纤维化
细胞角蛋白
医学
男科
免疫组织化学
病理
内科学
作者
Li Sun,Siwen Zhang,Qiyuan Chang,Jichun Tan
摘要
Intrauterine adhesion (IUA) is caused by endometrial damage and leads to the formation of scar fibrosis and repair disorders. We compared four different rat IUA modelling procedures in order to establish a stable animal model suitable for investigating IUA. Twenty female Sprague–Dawley rats were randomly divided into four groups. IUA was induced on one side of each rat uterus by ethanol instillation, heat stripping, mechanical injury or mechanical injury with infection (dual-injury); the other side of the uterus was left intact as a control. After 8 days the rats were sacrificed, their uteri were examined for histomorphology and expression of endometrial markers was checked using immunohistochemistry. All four IUA modelling procedures resulted in visual pathophysiological changes in the rat uterus, including stenosis, congestion and loss of elasticity. Endometrial thinning, shrinkage of glands and formation of fibrotic hyperplasia were also observed. All four procedures resulted in the downregulation of cytokeratin 18 and vimentin expression compared with control tissues, as well as the upregulation of collagen I expression. After mechanical injury and dual-injury the expression of interleukin 6 was significantly increased. Overall, our results suggest that ethanol instillation is the most stable IUA modelling procedure. Mechanical injury reliably yielded inflammatory indicators.
科研通智能强力驱动
Strongly Powered by AbleSci AI