Algorithmic Fairness and the Social Welfare Function

社会福利功能 社会规划师 弱势群体 衡平法 计算机科学 社会福利 福利 功能(生物学) 社会平等 人工智能 公共经济学 经济 机器学习 算法 微观经济学 政治学 经济增长 法学 进化生物学 生物 市场经济
作者
Sendhil Mullainathan
标识
DOI:10.1145/3219166.3219236
摘要

Social scientists have long been interested in discrimination and other inherent social inequities; and as such have developed models to evaluate policies through the dual lenses of efficiency and equity. More recently, computer scientists have illustrated show algorithms in many domains inherit and (sometimes inadvertently) bake in these same human biases and inequities. In this talk, I attempt to bring these two strands together: I embed concerns about algorithmic bias within a broader welfare economics framework. Instead of viewing the data as given, it begins with a model of the underlying social phenomena and their accompanying inequities. It then posits a social welfare function, where the social planner cares both about efficiency and equity. In particular, she places greater weight on equity than individual algorithm designers (firms or citizens) do. Intrinsic to this approach is that the social planner's preferences imply desired properties of algorithm: the fairness of a given algorithm is not a primitive; instead, it is derived from the welfare of the outcomes it engenders. Several pieces of conventional wisdom do not hold true in this framework. For example, "blinding the algorithm" to variables such as race generally reduces welfare, even for the disadvantaged group. At the other extreme, I characterize situations where apparently fair algorithms can drastically increase inequities. Overall, I argue that it would be beneficial to model fairness and algorithmic bias more holistically, including both a generative model of the underlying social phenomena and a description of a global welfare function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
充电宝应助CDC采纳,获得10
1秒前
科研通AI2S应助嗷嗷采纳,获得10
1秒前
lx完成签到,获得积分10
2秒前
11完成签到,获得积分10
2秒前
莀莀完成签到 ,获得积分10
2秒前
顺利毕业发布了新的文献求助10
3秒前
港港完成签到 ,获得积分10
4秒前
4秒前
4秒前
义气梦山完成签到,获得积分10
4秒前
热爱科研的小康完成签到,获得积分10
5秒前
ws发布了新的文献求助10
5秒前
大个应助郭靖采纳,获得10
6秒前
6秒前
shirly完成签到,获得积分10
6秒前
6秒前
junzilan发布了新的文献求助10
7秒前
9秒前
9秒前
9秒前
9秒前
王龑发布了新的文献求助30
10秒前
10秒前
Ancy应助含蓄心锁采纳,获得10
11秒前
坚强怀绿发布了新的文献求助10
11秒前
11秒前
啦啦啦发布了新的文献求助10
12秒前
12秒前
shirly发布了新的文献求助10
12秒前
默默碧空发布了新的文献求助10
13秒前
颿曦发布了新的文献求助10
13秒前
Lan关闭了Lan文献求助
13秒前
脑洞疼应助1111采纳,获得10
13秒前
充电宝应助Lou采纳,获得10
13秒前
君无邪发布了新的文献求助10
13秒前
kk99123应助俏皮的以晴采纳,获得10
13秒前
enen发布了新的文献求助10
13秒前
ding应助俏皮的以晴采纳,获得10
14秒前
赘婿应助俏皮的以晴采纳,获得10
14秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
植物基因组学(第二版) 1000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4094965
求助须知:如何正确求助?哪些是违规求助? 3633242
关于积分的说明 11516142
捐赠科研通 3343887
什么是DOI,文献DOI怎么找? 1837841
邀请新用户注册赠送积分活动 905391
科研通“疑难数据库(出版商)”最低求助积分说明 823111