Transcriptome analysis reveals genes expression pattern of Spirodela polyrhiza response to heat stress

转录组 WRKY蛋白质结构域 转录因子 生物 适应(眼睛) 热应力 基因 细胞生物学 基因表达 非生物胁迫 非生物成分 植物 遗传学 生态学 动物科学 神经科学
作者
Shuai Shang,Zaiwang Zhang,Liangyu Li,Jun Chen,Yu Zang,Xiaoxue Liu,Jun Wang,Xuexi Tang
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:225: 767-775 被引量:6
标识
DOI:10.1016/j.ijbiomac.2022.11.139
摘要

With global warming, high-temperature stress has become an essential abiotic factor affecting plant growth and survival. However, little knowledge was available of the molecular mechanism that aquatic plants respond to this stress. In the present study, we explore the adaptation mechanism of Spirodela polyrhiza, a surface-water-grown duckweed species broadly distributed worldwide to high temperatures, and analyze its gene expression pattern of S. polyrhiza under heat stress. Three temperature stress treatments, including room temperature group (CK), middle high-temperature group (MTS), and high-temperature group (45 °C, HTS) were set. The results showed that the contents of SOD first increased and then decreased, and those of MDA showed an upward trend under elevated high-temperature stress. According to the transcriptome data, 3145, 3487, and 3089 differently expressed genes (DEGs) were identified between MTS and CK, HTS and CK, and HTS and MTS, respectively. The transcription factors (TFs) analysis showed that 14 deferentially expressed TFs, including HSF, ERF, WRKY, and GRAS family, were responsive to heat stress, suggesting they might play vital roles in improving resistance to heat stress. In conclusion, S. polyrhiza could resist high temperatures by increasing SOD activity and MDA at the physiological level. Several transcription factors, energy accumulation processes, and cell membranes were involved in high-temperature stress at the molecular level. Our findings are helpful in better grasping the adaptation rules of some aquatic plants to high temperatures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶醉萧完成签到,获得积分10
1秒前
活在梦中是我完成签到,获得积分10
3秒前
yyyyds发布了新的文献求助10
5秒前
8秒前
gjww应助鹤轸采纳,获得10
9秒前
无花果应助爽o采纳,获得10
10秒前
科研通AI2S应助聪明的东蒽采纳,获得10
10秒前
11秒前
凯云完成签到,获得积分10
11秒前
今后应助Bblythe采纳,获得10
12秒前
11发布了新的文献求助10
14秒前
一颗梧桐发布了新的文献求助10
14秒前
0101发布了新的文献求助20
15秒前
张泽崇应助yyyyds采纳,获得10
16秒前
20秒前
lonely发布了新的文献求助10
25秒前
逸龙完成签到,获得积分10
30秒前
搜集达人应助李春林采纳,获得10
30秒前
英俊的铭应助TIANEO采纳,获得10
31秒前
zhuzhu完成签到,获得积分10
32秒前
34秒前
mmm完成签到,获得积分10
35秒前
思芋奶糕应助豌豆咩咩采纳,获得10
35秒前
37秒前
38秒前
38秒前
39秒前
digiwood完成签到,获得积分10
39秒前
42秒前
TIANEO发布了新的文献求助10
42秒前
42秒前
他也蓝发布了新的文献求助10
44秒前
45秒前
123发布了新的文献求助10
46秒前
李春林发布了新的文献求助10
47秒前
47秒前
Zhang发布了新的文献求助10
49秒前
星辰大海应助博利采纳,获得10
50秒前
50秒前
51秒前
高分求助中
Thermodynamic data for steelmaking 3000
Teaching Social and Emotional Learning in Physical Education 900
Cardiology: Board and Certification Review 400
[Lambert-Eaton syndrome without calcium channel autoantibodies] 340
Transformerboard III 300
Towards Net Zero Carbon Initiatives A Life Cycle Assessment Perspective 200
Erbium(III) Triflate: A Valuable Catalyst for the Rearrangement of Epoxides to Aldehydes and Ketones 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2360594
求助须知:如何正确求助?哪些是违规求助? 2068038
关于积分的说明 5165655
捐赠科研通 1796212
什么是DOI,文献DOI怎么找? 897301
版权声明 557665
科研通“疑难数据库(出版商)”最低求助积分说明 478958