Estimation of water quality variables based on machine learning model and cluster analysis-based empirical model using multi-source remote sensing data in inland reservoirs, South China

多光谱图像 水质 支持向量机 梯度升压 遥感 计算机科学 专题制图器 环境科学 经验模型 人工神经网络 随机森林 聚类分析 卫星图像 人工智能 地理 生态学 生物 程序设计语言
作者
Di Tian,Xinfeng Zhao,Lei Gao,Zuobing Liang,Zaizhi Yang,Pengcheng Zhang,Qirui Wu,Kun Ren,Rui Li,Chenchen Yang,Shaoheng Li,Meng Wang,Zhidong He,Zebin Zhang,Jianyao Chen
出处
期刊:Environmental Pollution [Elsevier BV]
卷期号:342: 123104-123104 被引量:5
标识
DOI:10.1016/j.envpol.2023.123104
摘要

Reservoirs play important roles in the drinking water supply for urban residents, agricultural water provision, and the maintenance of ecosystem health. Satellite optical remote sensing of water quality variables in medium and micro-sized inland waters under oligotrophic and mesotrophic status is challenging in terms of the spatio-temporal resolution, weather conditions and frequent nutrient status changes in reservoirs, etc., especially when quantifying non-optically active components (non-OACs). This study was based on the surface reflectance products of unmanned aerial vehicle (UAV) multispectral images, Sentinel-2B Multispectral instrument (MSI) images and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) by utilizing fuzzy C-means (FCM) clustering algorithm was combined with band combination (BC) model to construct the FCM-BC empirical model, and used mixed density network (MDN), extreme gradient boosting (XGBoost), deep neural network (DNN) and support vector regression (SVR) machine learning (ML) models to invert 12 kinds of optically active components (OACs) and non-OACs. Compared with the unclustered BC (UC) model, the mean coefficient of determination (MR) of the FCM-BC models was improved by at least 46.9%. MDN model showed best accuracy (R2 in the range of 0.60–0.98) and stability (R2 decreased by up to 13.2%). The accuracy of UAV was relatively higher in both empirical methods and machine learning methods. Additionally, the spatio-temporal distribution maps of four water quality variables were mapped based on the MDN model and UAV images, all platforms showed good consistency. An inversion strategy of water quality variables in various monitoring frequencies and weather conditions were proposed finally. The purpose of introducing the UAV platform was to cooperate with the satellite to improve the monitoring response ability of OACs and non-OACs in small and micro-sized oligotrophic and mesotrophic water bodies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lucas应助渔婆采纳,获得10
刚刚
站走跑完成签到 ,获得积分10
刚刚
fsf完成签到,获得积分10
刚刚
AHR发布了新的文献求助10
1秒前
公孙朝雨完成签到,获得积分10
1秒前
JIAYIWANG发布了新的文献求助10
1秒前
露露完成签到,获得积分10
2秒前
handada发布了新的文献求助10
2秒前
馆长举报耶稣与梦求助涉嫌违规
2秒前
you秀的哈密瓜完成签到,获得积分10
2秒前
忧郁的听露完成签到,获得积分10
3秒前
4秒前
CodeCraft应助机灵信封采纳,获得10
4秒前
iNk应助w2503采纳,获得20
5秒前
搜集达人应助高有财采纳,获得10
5秒前
负责水风完成签到,获得积分10
5秒前
公主stellar发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
evny发布了新的文献求助10
6秒前
XHT完成签到,获得积分10
6秒前
瑞汐没有咖啡完成签到,获得积分10
6秒前
NexusExplorer应助任性宇豪采纳,获得10
6秒前
6秒前
爱听歌的鞋垫完成签到,获得积分20
6秒前
zc19891130发布了新的文献求助10
7秒前
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
无宇伦比应助科研通管家采纳,获得50
7秒前
7秒前
舟舟完成签到,获得积分10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
Amy完成签到,获得积分10
8秒前
华仔应助new采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4697977
求助须知:如何正确求助?哪些是违规求助? 4067266
关于积分的说明 12574668
捐赠科研通 3766799
什么是DOI,文献DOI怎么找? 2080239
邀请新用户注册赠送积分活动 1108320
科研通“疑难数据库(出版商)”最低求助积分说明 986664