Estimation of water quality variables based on machine learning model and cluster analysis-based empirical model using multi-source remote sensing data in inland reservoirs, South China

多光谱图像 水质 支持向量机 梯度升压 遥感 计算机科学 专题制图器 环境科学 经验模型 人工神经网络 随机森林 聚类分析 卫星图像 人工智能 地理 生态学 生物 程序设计语言
作者
Di Tian,Xinfeng Zhao,Lei Gao,Zuobing Liang,Zaizhi Yang,Pengcheng Zhang,Qirui Wu,Kun Ren,Rui Li,Chenchen Yang,Shaoheng Li,Meng Wang,Zhidong He,Zebin Zhang,Jianyao Chen
出处
期刊:Environmental Pollution [Elsevier BV]
卷期号:342: 123104-123104 被引量:5
标识
DOI:10.1016/j.envpol.2023.123104
摘要

Reservoirs play important roles in the drinking water supply for urban residents, agricultural water provision, and the maintenance of ecosystem health. Satellite optical remote sensing of water quality variables in medium and micro-sized inland waters under oligotrophic and mesotrophic status is challenging in terms of the spatio-temporal resolution, weather conditions and frequent nutrient status changes in reservoirs, etc., especially when quantifying non-optically active components (non-OACs). This study was based on the surface reflectance products of unmanned aerial vehicle (UAV) multispectral images, Sentinel-2B Multispectral instrument (MSI) images and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) by utilizing fuzzy C-means (FCM) clustering algorithm was combined with band combination (BC) model to construct the FCM-BC empirical model, and used mixed density network (MDN), extreme gradient boosting (XGBoost), deep neural network (DNN) and support vector regression (SVR) machine learning (ML) models to invert 12 kinds of optically active components (OACs) and non-OACs. Compared with the unclustered BC (UC) model, the mean coefficient of determination (MR) of the FCM-BC models was improved by at least 46.9%. MDN model showed best accuracy (R2 in the range of 0.60–0.98) and stability (R2 decreased by up to 13.2%). The accuracy of UAV was relatively higher in both empirical methods and machine learning methods. Additionally, the spatio-temporal distribution maps of four water quality variables were mapped based on the MDN model and UAV images, all platforms showed good consistency. An inversion strategy of water quality variables in various monitoring frequencies and weather conditions were proposed finally. The purpose of introducing the UAV platform was to cooperate with the satellite to improve the monitoring response ability of OACs and non-OACs in small and micro-sized oligotrophic and mesotrophic water bodies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上仰完成签到,获得积分10
1秒前
1秒前
4秒前
开心的盛男完成签到 ,获得积分10
4秒前
小黑完成签到 ,获得积分10
4秒前
batmanrobin完成签到,获得积分10
4秒前
ajun完成签到,获得积分10
6秒前
葱油饼完成签到 ,获得积分10
7秒前
llg发布了新的文献求助10
8秒前
xfye发布了新的文献求助20
8秒前
llg完成签到,获得积分10
12秒前
16秒前
CC完成签到 ,获得积分10
17秒前
蔡勇强完成签到 ,获得积分10
17秒前
科研通AI2S应助负数采纳,获得10
20秒前
舒心靖琪完成签到 ,获得积分10
21秒前
Jupiter完成签到,获得积分10
21秒前
prim发布了新的文献求助10
22秒前
whitepiece完成签到,获得积分10
24秒前
太空工程师完成签到,获得积分10
25秒前
恒河鲤完成签到,获得积分10
30秒前
32秒前
plant完成签到 ,获得积分10
33秒前
pengyang完成签到 ,获得积分10
34秒前
34秒前
阿斯台德发布了新的文献求助10
36秒前
求知完成签到,获得积分10
38秒前
38秒前
什么也难不倒我完成签到 ,获得积分10
42秒前
迷路曼雁应助大成子采纳,获得20
46秒前
Wang发布了新的文献求助10
51秒前
MOMO完成签到 ,获得积分10
51秒前
杰_骜不驯完成签到,获得积分10
55秒前
木棉完成签到,获得积分10
56秒前
啊怪完成签到 ,获得积分10
57秒前
阿萨德完成签到,获得积分10
58秒前
SSSstriker完成签到,获得积分10
1分钟前
1分钟前
xfye完成签到,获得积分20
1分钟前
LK8669090发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776116
求助须知:如何正确求助?哪些是违规求助? 3321700
关于积分的说明 10206716
捐赠科研通 3036792
什么是DOI,文献DOI怎么找? 1666450
邀请新用户注册赠送积分活动 797459
科研通“疑难数据库(出版商)”最低求助积分说明 757841