M-DETR: Multi-scale DETR for Optical Music Recognition

计算机科学 比例(比率) 背景(考古学) 情报检索 人工智能 数据挖掘 地图学 生物 古生物学 地理
作者
Fei Luo,Yifan Dai,Joel Fuentes,Weichao Ding,Xueqin Zhang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123664-123664 被引量:2
标识
DOI:10.1016/j.eswa.2024.123664
摘要

Optical Music Recognition (OMR) is an important way to digitize score images and has broad application prospects in fields such as the storage of music documents, music education and digital creation. As a new paradigm for object detection, DETR (detection transformer) has the ability to associate contextual information, which can be exploited to resolve the OMR task. However, the original DETR does not fit OMR well due to its high computational complexity and numerous parameters. To address the DETR defects and improve the recognition accuracy of OMR, we propose a novel multi-scale DETR (M-DETR) with a multi-scale feature fusion mechanism and improved attention mechanisms. First, a new multi-scale feature fusion mechanism is designed to let the backbone network of M-DETR get rich multi-scale information. Then, a key-region attention mechanism is incorporated based on the character that the key information is concentrated on a score image. Finally, the pre-context attention mechanism is introduced to make better use of the contextual association between recognition notes in music scores. Experiment results show that M-DETR achieves recognition accuracy of 90.6% for 7 typical small-sized notes, which is better than Faster R-CNN and YOLO v5, and the improvement rate is 10.02% compared to the original DETR algorithm. The results indicate that M-DETR is an effective way for the OMR task, which also provides a new solution for the detection of small-sized objects with contextual association.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唠叨的大门完成签到,获得积分20
刚刚
嘟噜发布了新的文献求助10
刚刚
科目三应助liva采纳,获得10
1秒前
1秒前
兔子发布了新的文献求助10
1秒前
1秒前
我心飞翔完成签到 ,获得积分10
1秒前
1秒前
kygwrw完成签到,获得积分10
2秒前
hui发布了新的文献求助10
2秒前
jackmilton发布了新的文献求助10
2秒前
value发布了新的文献求助30
3秒前
徐蹇发布了新的文献求助10
3秒前
3秒前
Twilight发布了新的文献求助10
4秒前
4秒前
yi完成签到,获得积分10
5秒前
yy发布了新的文献求助10
6秒前
Krainy77发布了新的文献求助10
6秒前
6秒前
7秒前
安德鲁发布了新的文献求助10
7秒前
RRR发布了新的文献求助30
8秒前
香蕉觅云应助木木采纳,获得10
8秒前
犹豫豆芽完成签到 ,获得积分10
8秒前
赘婿应助hui采纳,获得10
9秒前
9秒前
兔子发布了新的文献求助10
10秒前
11秒前
11秒前
阳光的衫发布了新的文献求助10
12秒前
12秒前
Comet发布了新的文献求助10
12秒前
12秒前
Twilight完成签到,获得积分20
12秒前
13秒前
烟花应助徐蹇采纳,获得10
13秒前
汉堡包应助徐蹇采纳,获得10
13秒前
彭于晏应助徐蹇采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263504
求助须知:如何正确求助?哪些是违规求助? 4424042
关于积分的说明 13771651
捐赠科研通 4299063
什么是DOI,文献DOI怎么找? 2358884
邀请新用户注册赠送积分活动 1355136
关于科研通互助平台的介绍 1316351