Cutting Weights of Deep Learning Models for Heart Sound Classification: Introducing a Knowledge Distillation Approach

计算机科学 可穿戴计算机 卷积神经网络 人工神经网络 试验装置 相关性(法律) 人工智能 召回 机器学习 集合(抽象数据类型) 深度学习 嵌入式系统 法学 政治学 程序设计语言 哲学 语言学
作者
Zikai Song,Lixian Zhu,Yiyan Wang,Mengkai Sun,Kun Qian,Bin Hu,Yoshiharu Yamamoto,Björn W. Schuller
标识
DOI:10.1109/embc40787.2023.10340704
摘要

Cardiovascular diseases (CVDs) are the number one cause of death worldwide. In recent years, intelligent auxiliary diagnosis of CVDs based on computer audition has become a popular research field, and intelligent diagnosis technology is increasingly mature. Neural networks used to monitor CVDs are becoming more complex, requiring more computing power and memory, and are difficult to deploy in wearable devices. This paper proposes a lightweight model for classifying heart sounds based on knowledge distillation, which can be deployed in wearable devices to monitor the heart sounds of wearers. The network model is designed based on Convolutional Neural Networks (CNNs). Model performance is evaluated by extracting Mel Frequency Cepstral Coefficients (MFCCs) features from the PhysioNet/CinC Challenge 2016 dataset. The experimental results show that knowledge distillation can improve a lightweight network's accuracy, and our model performs well on the test set. Especially, when the knowledge distillation temperature is 7 and the weight α is 0.1, the accuracy is 88.5 %, the recall is 83.8 %, and the specificity is 93.6 %.Clinical relevance— A lightweight model of heart sound classification based on knowledge distillation can be deployed on various hardware devices for timely monitoring and feedback of the physical condition of patients with CVDs for timely provision of medical advice. When the model is deployed on the medical instruments of the hospital, the condition of severe and hospitalised patients can be timely fed back and clinical treatment advice can be provided to the clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
丘比特应助飘逸怜菡采纳,获得10
1秒前
罗霖应助Koalas采纳,获得50
1秒前
ikochou完成签到,获得积分20
1秒前
zimo完成签到,获得积分10
2秒前
天真玲发布了新的文献求助10
2秒前
天天快乐应助zllllll采纳,获得10
2秒前
吕晓飞发布了新的文献求助10
2秒前
cheer1104完成签到 ,获得积分10
2秒前
3秒前
3336929526完成签到,获得积分20
3秒前
3秒前
JamesPei应助木子李采纳,获得10
3秒前
归零完成签到,获得积分10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
4秒前
所所应助柯伊达采纳,获得10
4秒前
啊这应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
5秒前
乐观小之应助科研通管家采纳,获得10
5秒前
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
OKYT发布了新的文献求助20
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得30
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
完美世界应助啊哈哈采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
123应助零零零零采纳,获得20
6秒前
完美世界应助科研通管家采纳,获得20
6秒前
6秒前
luffy完成签到,获得积分10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5341080
求助须知:如何正确求助?哪些是违规求助? 4477385
关于积分的说明 13935147
捐赠科研通 4373423
什么是DOI,文献DOI怎么找? 2402988
邀请新用户注册赠送积分活动 1395878
关于科研通互助平台的介绍 1367862