A novel sub-regional radiomics model to predict immunotherapy response in non-small cell lung carcinoma

无线电技术 免疫疗法 医学 小细胞肺癌 病理 癌症研究 肿瘤科 免疫学 内科学 小细胞癌 放射科 免疫系统
作者
Jie Peng,Dan Zou,Xudong Zhang,Honglian Ma,Lijie Han,Biao Yao
出处
期刊:Journal of Translational Medicine [BioMed Central]
卷期号:22 (1) 被引量:4
标识
DOI:10.1186/s12967-024-04904-6
摘要

Abstract Background Identifying precise biomarkers of immunotherapy response for non-small cell lung carcinoma (NSCLC) before treatment is challenging. This study aimed to construct and investigate the potential performance of a sub-regional radiomics model (SRRM) as a novel tumor biomarker in predicting the response of patients with NSCLC treated with immune checkpoint inhibitors, and test whether its predictive performance is superior to that of conventional radiomics, tumor mutational burden (TMB) score and programmed death ligand-1 (PD-L1) expression. Methods We categorized 264 patients from retrospective databases of two centers into training ( n = 159) and validation ( n = 105) cohorts. Radiomic features were extracted from three sub-regions of the tumor region of interest using the K-means method. We extracted 1,896 features from each sub-region, resulting in 5688 features per sample. The least absolute shrinkage and selection operator regression method was used to select sub-regional radiomic features. The SRRM was constructed and validated using the support vector machine algorithm. We used next-generation sequencing to classify patients from the two cohorts into high TMB (≥ 10 muts/Mb) and low TMB (< 10 muts/Mb) groups; immunohistochemistry was performed to assess PD-L1 expression in formalin-fixed, paraffin-embedded tumor sections, with high expression defined as ≥ 50% of tumor cells being positive. Associations between the SRRM and progression-free survival (PFS) and variant genes were assessed. Results Eleven sub-regional radiomic features were employed to develop the SRRM. The areas under the receiver operating characteristic curve (AUCs) of the proposed SRRM were 0.90 (95% confidence interval [CI] 0.84−0.96) and 0.86 (95% CI 0.76−0.95) in the training and validation cohorts, respectively. The SRRM (low vs. high; cutoff value = 0.936) was significantly associated with PFS in the training (hazard ratio [HR] = 0.35 [0.24−0.50], P < 0.001) and validation (HR = 0.42 [0.26−0.67], P = 0.001) cohorts. A significant correlation between the SRRM and three variant genes ( H3C4 , PAX5 , and EGFR ) was observed. In the validation cohort, the SRRM demonstrated a higher AUC (0.86, P < 0.001) than that for PD-L1 expression (0.66, P = 0.034) and TMB score (0.54, P = 0.552). Conclusions The SRRM had better predictive performance and was superior to conventional radiomics, PD-L1 expression, and TMB score. The SRRM effectively stratified the progression-free survival (PFS) risk among patients with NSCLC receiving immunotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐家豪完成签到 ,获得积分20
刚刚
丰富采波发布了新的文献求助10
3秒前
孤梦落雨完成签到,获得积分10
3秒前
7秒前
黎明暂缓完成签到,获得积分10
8秒前
丁真先生完成签到,获得积分10
8秒前
xdy应助胡新语采纳,获得10
9秒前
Army616完成签到,获得积分10
9秒前
宇文安寒完成签到,获得积分10
10秒前
可爱的函函应助认真学习采纳,获得10
12秒前
欣喜沛芹发布了新的文献求助10
14秒前
14秒前
夹心饼干完成签到 ,获得积分10
16秒前
领导范儿应助飞雨听澜采纳,获得10
17秒前
爆米花应助飞雨听澜采纳,获得10
17秒前
17秒前
17秒前
叫我读书仔完成签到 ,获得积分10
17秒前
18秒前
香蕉觅云应助丰富采波采纳,获得10
18秒前
19秒前
CY发布了新的文献求助10
19秒前
20秒前
可耐的香露完成签到,获得积分10
21秒前
23秒前
米米发布了新的文献求助10
23秒前
24秒前
Hello应助CY采纳,获得10
24秒前
24秒前
尼莫发布了新的文献求助10
25秒前
忧郁绿蝶完成签到,获得积分10
25秒前
认真学习发布了新的文献求助10
26秒前
28秒前
PCY发布了新的文献求助30
29秒前
孔令琦发布了新的文献求助10
31秒前
飞飞完成签到,获得积分10
31秒前
31秒前
cxm完成签到 ,获得积分10
31秒前
小二郎应助飞雨听澜采纳,获得10
33秒前
羊村村长发布了新的文献求助10
36秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818644
求助须知:如何正确求助?哪些是违规求助? 3361692
关于积分的说明 10413776
捐赠科研通 3079904
什么是DOI,文献DOI怎么找? 1693544
邀请新用户注册赠送积分活动 814550
科研通“疑难数据库(出版商)”最低求助积分说明 768248