亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning combining mammography and ultrasound images to predict the malignancy of BI-RADS US 4A lesions in women with dense breasts:a diagnostic study

医学 双雷达 列线图 乳腺摄影术 恶性肿瘤 放射科 队列 接收机工作特性 乳腺超声检查 置信区间 前瞻性队列研究 超声波 曲线下面积 乳房成像 癌症 乳腺癌 内科学
作者
Yaping Yang,Ying Zhong,Junwei Li,Jiahao Feng,Chang Gong,Yunfang Yu,Yue Hu,Ran Gu,Hongli Wang,Fengtao Liu,Jingsi Mei,Xiaofang Jiang,Jin Wang,Qinyue Yao,Wei Wu,Qiang Liu,Herui Yao
出处
期刊:International Journal of Surgery [Wolters Kluwer]
被引量:3
标识
DOI:10.1097/js9.0000000000001186
摘要

Objectives: We aimed to assess the performance of a deep learning (DL) model, based on a combination of ultrasound (US) and mammography (MG) images, for predicting malignancy in breast lesions categorized as Breast Imaging Reporting and Data System (BI-RADS) US 4A in diagnostic patients with dense breasts. Methods: A total of 992 patients were randomly allocated into the training cohort and the test cohort at a proportion of 4:1. Another, 218 patients were enrolled to form a prospective validation cohort. The DL model was developed by incorporating both US and MG images. The predictive performance of the combined DL model for malignancy was evaluated by sensitivity, specificity and area under the receiver operating characteristic curve (AUC). The combined DL model was then compared to a clinical nomogram model and to the DL model trained using US image only and to that trained MG image only. Results: The combined DL model showed satisfactory diagnostic performance for predicting malignancy in breast lesions, with an AUC of 0.940 (95% confidence interval [95%CI], 0.874~1.000) in the test cohort, and an AUC of 0.906 (95%CI, 0.817~0.995) in the validation cohort, which was significantly higher than the clinical nomogram model, and the DL model for US or MG alone ( P <0.05). Conclusions: The study developed an objective DL model combining both US and MG imaging features, which was proven to be more accurate for predicting malignancy in the BI-RADS US 4A breast lesions of patients with dense breasts. This model may then be used to more accurately guide clinicians’ choices about whether performing biopsies in breast cancer diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助manh123采纳,获得10
3秒前
yoyo完成签到 ,获得积分10
8秒前
12秒前
谌倪完成签到 ,获得积分10
12秒前
20秒前
23秒前
yuan发布了新的文献求助10
26秒前
SHD完成签到 ,获得积分10
30秒前
32秒前
34秒前
manh123发布了新的文献求助10
38秒前
44秒前
MeiyanZou完成签到 ,获得积分10
45秒前
gongyanqing完成签到,获得积分10
45秒前
MissingParadise完成签到 ,获得积分10
51秒前
54秒前
从容芮应助cuicui采纳,获得30
1分钟前
1分钟前
1分钟前
Huimin完成签到,获得积分10
1分钟前
王恒关注了科研通微信公众号
1分钟前
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
eric888应助科研通管家采纳,获得30
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
小蘑菇应助manh123采纳,获得10
1分钟前
1分钟前
王恒完成签到,获得积分10
1分钟前
科研通AI2S应助梅者如西采纳,获得10
1分钟前
柏小霜完成签到 ,获得积分10
1分钟前
1分钟前
吞吞完成签到 ,获得积分10
2分钟前
LJ完成签到 ,获得积分10
2分钟前
2分钟前
在水一方应助完美元柏采纳,获得10
2分钟前
2分钟前
2分钟前
完美元柏完成签到,获得积分10
2分钟前
2分钟前
jyy完成签到,获得积分10
2分钟前
高分求助中
新中国出版事业的先驱胡愈之 1500
Essentials of Mental Health 800
Narcissistic Personality Disorder 700
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
Drug distribution in mammals 500
Parametric Random Vibration 400
Single Element Semiconductors: Properties and Devices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3853885
求助须知:如何正确求助?哪些是违规求助? 3396407
关于积分的说明 10596560
捐赠科研通 3118261
什么是DOI,文献DOI怎么找? 1718557
邀请新用户注册赠送积分活动 827620
科研通“疑难数据库(出版商)”最低求助积分说明 776926