Evaluating the Accuracy of AI-Based Software vs Human Interpretation in the Diagnosis of Dental Caries Using Intraoral Radiographs: An RCT

射线照相术 医学 背景(考古学) 牙科 随机对照试验 诊断准确性 人工智能 放射科 计算机科学 病理 古生物学 生物
作者
Madhusmita Das,Kamil Shahnawaz,Koti Raghavendra,R. Kavitha,Bharath Nagareddy,Sabari Murugesan
出处
期刊:Journal of Pharmacy and Bioallied Sciences [Medknow]
卷期号:16 (Suppl 1): S815-S817
标识
DOI:10.4103/jpbs.jpbs_1029_23
摘要

A BSTRACT Background: Dental caries is a prevalent oral health issue, often diagnosed through intraoral radiographs. The accuracy of Artificial Intelligence (AI) in diagnosing dental caries from these radiographs is a subject of growing interest Materials and Methods: In this RCT, 200 intraoral radiographs were collected from patients seeking dental care. These radiographs were independently evaluated by both AI-based software and experienced human dentists. The software utilized deep learning algorithms to analyze the radiographs for signs of dental caries. The performance of both AI and human interpretations was compared by calculating sensitivity, specificity, and overall accuracy. Arbitrary values of 85% sensitivity, 90% specificity, and 88% overall accuracy were set as benchmarks. Results: The AI-based software demonstrated a sensitivity of 88%, a specificity of 91%, and an overall accuracy of 89% in diagnosing dental caries from intraoral radiographs. Human interpretation, however, yielded a sensitivity of 84%, a specificity of 88%, and an overall accuracy of 86%. The AI-based software performed consistently close to or above the predefined benchmarks, while human interpretation showed slightly lower accuracy rates Conclusion: This RCT suggests that AI-based software is a valuable tool for diagnosing dental caries from intraoral radiographs, with performance comparable to or exceeding that of experienced human dentists. The consistent accuracy of AI in this context highlights its potential as an adjunctive diagnostic tool, which can aid dental professionals in more efficient and precise caries detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
zhang发布了新的文献求助10
5秒前
7秒前
zzy完成签到,获得积分10
8秒前
699565完成签到,获得积分10
9秒前
上官若男应助hwezhu采纳,获得10
12秒前
科研通AI2S应助吴图图采纳,获得10
14秒前
14秒前
17秒前
oreo发布了新的文献求助10
20秒前
20秒前
21秒前
hwezhu发布了新的文献求助10
23秒前
而已完成签到,获得积分10
24秒前
科研通AI2S应助美满的安蕾采纳,获得10
28秒前
科研通AI2S应助阿娟儿采纳,获得30
31秒前
淡定的天空完成签到,获得积分10
31秒前
阿九完成签到,获得积分10
37秒前
41秒前
善良的剑通应助丸橙采纳,获得10
42秒前
44秒前
46秒前
46秒前
SCIfafafafa发布了新的文献求助10
48秒前
49秒前
51秒前
Chris完成签到,获得积分10
55秒前
古月发布了新的文献求助10
56秒前
59秒前
炫哥IRIS完成签到,获得积分10
1分钟前
1分钟前
1分钟前
刘小源完成签到 ,获得积分10
1分钟前
cmwang发布了新的文献求助10
1分钟前
不倦应助高高雪瑶采纳,获得20
1分钟前
1分钟前
驿寄梅花发布了新的文献求助10
1分钟前
jurrrrin发布了新的文献求助10
1分钟前
孙玮完成签到,获得积分10
1分钟前
小二郎应助dasfdufos采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780426
求助须知:如何正确求助?哪些是违规求助? 3325838
关于积分的说明 10224370
捐赠科研通 3040880
什么是DOI,文献DOI怎么找? 1669111
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649