Discrete wavelet transform based processing of embroidered textile-electrode electromyography signal acquired with load and pressure effect

材料科学 声学 肌电图 电极 信号处理 信号(编程语言) 织物 小波变换 小波 复合材料 计算机科学 人工智能 电子工程 工程类 数字信号处理 医学 物理医学与康复 物理化学 程序设计语言 化学 物理
作者
Bulcha Belay Etana,Ahmed Ali Dawud,Benny Malengier,W. Sitek,Wendimu Fanta Gemechu,Janarthanan Krishnamoorthy,Lieva Van Langenhove
出处
期刊:Journal of Industrial Textiles [SAGE]
卷期号:54 被引量:4
标识
DOI:10.1177/15280837241232449
摘要

The diagnosis of neuromuscular diseases is complicated by overlapping symptoms from other conditions. Textile-based surface electromyography (sEMG) of skeletal muscles, offer promising potential in diagnosis, treatment, and rehabilitation of various neuromuscular disorders. However, it is important to consider the impact of load and pressure on EMG signals, as this can significantly affect the signal’s accuracy. This study seeks to investigate the influence of load and pressure on EMG signals and establish a processing framework for these signals in the diagnosis of neuromuscular diseases. The sEMG data were collected from healthy subjects using a textile electrode developed from polyester multi-filament conductive hybrid thread (CleverTex). The textrode was embroidered directly on an elastic bandage (Velcro® strap) placed on volunteer’s muscles while different activities were performed with varying loads and pressure. The collected data were pre-processed using standard techniques of the discrete wavelet transform to remove noise and artifacts. The performance of the proposed denoising algorithm was evaluated using the signal-to-noise ratio (SNR), percentage root mean square difference (PRD), and root mean square error (RMSE). Various signal processing approaches (filters) were considered and the results were compared with the proposed EMG noise reduction algorithms. Based on the experimental results, the fourth level of decomposition for the sym5 wavelets with the Rigrsure threshold method achieved the highest signal-to-noise ratio (SNR) values of 16.69 and 21.91, for soft and hard thresholding functions, respectively. The SNR values of 22.11, 21.54, and 2.78 at three different pressure levels 5 mmHg, 10 mmHg, and 20 mmHg, respectively, indicate the superior performance of wavelet multiresolution filter in de-noising applications. The results of this study suggest that our methodology is effective, precise, and reliable for analysing sEMG data and provide insights into both physiological and pathological neuromuscular conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tangguo发布了新的文献求助10
1秒前
xiaoxiao33完成签到,获得积分10
1秒前
Raul发布了新的文献求助10
2秒前
乐乐应助调皮的酬海采纳,获得30
2秒前
LukaMagic发布了新的文献求助10
3秒前
3秒前
孤独的冰彤完成签到,获得积分10
4秒前
4秒前
江枫发布了新的文献求助30
4秒前
MoCh发布了新的文献求助10
5秒前
CipherSage应助Gandiva采纳,获得10
5秒前
6秒前
Rain发布了新的文献求助10
6秒前
丘比特应助和谐小白菜采纳,获得10
7秒前
7秒前
冰棒比冰冰完成签到 ,获得积分10
8秒前
胡凯发布了新的文献求助10
8秒前
9秒前
9秒前
谦让涵山发布了新的文献求助20
9秒前
9秒前
11秒前
11秒前
11秒前
随安完成签到,获得积分10
11秒前
11秒前
JamesPei应助谢大喵采纳,获得30
11秒前
12秒前
好吃的香味完成签到,获得积分10
13秒前
Astrame发布了新的文献求助10
14秒前
科研通AI6.1应助superneo采纳,获得10
14秒前
笨笨琪发布了新的文献求助10
15秒前
lt04发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778422
求助须知:如何正确求助?哪些是违规求助? 5641193
关于积分的说明 15449238
捐赠科研通 4910131
什么是DOI,文献DOI怎么找? 2642318
邀请新用户注册赠送积分活动 1590208
关于科研通互助平台的介绍 1544554