Optimized In Situ Doping Strategy Stabling Single-Crystal Ultrahigh-Nickel Layered Cathode Materials

材料科学 阴极 原位 兴奋剂 纳米技术 化学工程 光电子学 冶金 化学 物理化学 有机化学 工程类
作者
Wei Wang,Yanan Zhou,Zhenan Bao,Weiyuan Huang,Lei Cheng,Jing Wang,Xinyou He,Lei Yu,Zhiming Xiao,Jianguo Wen,Tongchao Liu,Khalil Amine,Xing Ou
出处
期刊:ACS Nano [American Chemical Society]
标识
DOI:10.1021/acsnano.3c10986
摘要

Single-crystal Ni-rich cathodes offer promising prospects in mitigating intergranular microcracks and side reaction issues commonly encountered in conventional polycrystalline cathodes. However, the utilization of micrometer-sized single-crystal particles has raised concerns about sluggish Li+ diffusion kinetics and unfavorable structural degradation, particularly in high Ni content cathodes. Herein, we present an innovative in situ doping strategy to regulate the dominant growth of characteristic planes in the single-crystal precursor, leading to enhanced mechanical properties and effectively tackling the challenges posed by ultrahigh-nickel layered cathodes. Compared with the traditional dry-doping method, our in situ doping approach possesses a more homogeneous and consistent modifying effect from the inside out, ensuring the uniform distribution of doping ions with large radius (Nb, Zr, W, etc). This mitigates the generally unsatisfactory substitution effect, thereby minimizing undesirable coating layers induced by different solubilities during the calcination process. Additionally, the uniformly dispersed ions from this in situ doping are beneficial for alleviating the two-phase coexistence of H2/H3 and optimizing the Li+ concentration gradient during cycling, thus inhibiting the formation of intragranular cracks and interfacial deterioration. Consequently, the in situ doped cathodes demonstrate exceptional cycle retention and rate performance under various harsh testing conditions. Our optimized in situ doping strategy not only expands the application prospects of elemental doping but also offers a promising research direction for developing high-energy-density single-crystal cathodes with extended lifetime.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Seven发布了新的文献求助20
1秒前
贪玩小小完成签到 ,获得积分10
1秒前
酸奶完成签到 ,获得积分10
1秒前
WM应助Zxc采纳,获得10
2秒前
3秒前
shinysparrow完成签到,获得积分0
4秒前
鸭梨很大完成签到 ,获得积分10
4秒前
6秒前
6秒前
科研小白发布了新的文献求助10
6秒前
6秒前
遇鲸还潮完成签到,获得积分10
6秒前
6秒前
江月诗完成签到,获得积分10
6秒前
封不迟发布了新的文献求助10
6秒前
7秒前
大腿弟完成签到,获得积分10
8秒前
我家不住隔壁完成签到 ,获得积分10
8秒前
9秒前
9秒前
10秒前
10秒前
奶糖爱果冻完成签到 ,获得积分10
11秒前
von发布了新的文献求助10
11秒前
11秒前
12秒前
tqmx完成签到,获得积分10
13秒前
江月诗发布了新的文献求助10
13秒前
一叶舟完成签到,获得积分10
14秒前
1s发布了新的文献求助10
14秒前
14秒前
14秒前
十三完成签到 ,获得积分10
15秒前
15秒前
15秒前
xxxxx发布了新的文献求助30
15秒前
16秒前
17秒前
fx完成签到,获得积分10
18秒前
Zie发布了新的文献求助10
19秒前
高分求助中
The three stars each : the Astrolabes and related texts 1070
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2407965
求助须知:如何正确求助?哪些是违规求助? 2104481
关于积分的说明 5312628
捐赠科研通 1831963
什么是DOI,文献DOI怎么找? 912851
版权声明 560722
科研通“疑难数据库(出版商)”最低求助积分说明 488080