Optimized In Situ Doping Strategy Stabling Single-Crystal Ultrahigh-Nickel Layered Cathode Materials

材料科学 阴极 兴奋剂 微晶 煅烧 掺杂剂 Crystal(编程语言) 纳米技术 单晶 化学工程 光电子学 冶金 结晶学 化学 物理化学 催化作用 工程类 生物化学 计算机科学 程序设计语言
作者
Wei Wang,Yanan Zhou,Bao Zhang,Weiyuan Huang,Lei Cheng,Jing Wang,Xinyou He,Lei Yu,Zhiming Xiao,Jianguo Wen,Tongchao Liu,Khalil Amine,Xing Ou
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (11): 8002-8016 被引量:29
标识
DOI:10.1021/acsnano.3c10986
摘要

Single-crystal Ni-rich cathodes offer promising prospects in mitigating intergranular microcracks and side reaction issues commonly encountered in conventional polycrystalline cathodes. However, the utilization of micrometer-sized single-crystal particles has raised concerns about sluggish Li+ diffusion kinetics and unfavorable structural degradation, particularly in high Ni content cathodes. Herein, we present an innovative in situ doping strategy to regulate the dominant growth of characteristic planes in the single-crystal precursor, leading to enhanced mechanical properties and effectively tackling the challenges posed by ultrahigh-nickel layered cathodes. Compared with the traditional dry-doping method, our in situ doping approach possesses a more homogeneous and consistent modifying effect from the inside out, ensuring the uniform distribution of doping ions with large radius (Nb, Zr, W, etc). This mitigates the generally unsatisfactory substitution effect, thereby minimizing undesirable coating layers induced by different solubilities during the calcination process. Additionally, the uniformly dispersed ions from this in situ doping are beneficial for alleviating the two-phase coexistence of H2/H3 and optimizing the Li+ concentration gradient during cycling, thus inhibiting the formation of intragranular cracks and interfacial deterioration. Consequently, the in situ doped cathodes demonstrate exceptional cycle retention and rate performance under various harsh testing conditions. Our optimized in situ doping strategy not only expands the application prospects of elemental doping but also offers a promising research direction for developing high-energy-density single-crystal cathodes with extended lifetime.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一团小煤球完成签到,获得积分10
1秒前
长安发布了新的文献求助10
2秒前
3秒前
萨伊普发布了新的文献求助10
5秒前
CoCoco完成签到 ,获得积分10
5秒前
7秒前
高兴的易形完成签到,获得积分10
7秒前
9秒前
10秒前
qpp完成签到,获得积分10
10秒前
科研通AI2S应助高兴的易形采纳,获得10
11秒前
123发布了新的文献求助30
11秒前
LGH完成签到 ,获得积分10
12秒前
KEyanba完成签到,获得积分0
12秒前
ll完成签到,获得积分10
14秒前
️语完成签到 ,获得积分10
14秒前
天天快乐应助修仙中采纳,获得10
15秒前
好玩ab完成签到,获得积分10
16秒前
17秒前
桃花不换酒完成签到,获得积分10
18秒前
nini完成签到,获得积分10
18秒前
23秒前
huifeideyu发布了新的文献求助10
23秒前
科研通AI5应助痴情的语堂采纳,获得10
25秒前
nczpf2010完成签到,获得积分10
26秒前
26秒前
27秒前
hcsdgf完成签到 ,获得积分10
27秒前
27秒前
不爱冒泡的气泡水完成签到 ,获得积分10
28秒前
masheng发布了新的文献求助10
29秒前
30秒前
LC完成签到 ,获得积分10
30秒前
33秒前
科研通AI5应助积极书双采纳,获得10
34秒前
希望天下0贩的0应助masheng采纳,获得10
34秒前
飞雷神完成签到 ,获得积分10
35秒前
36秒前
42秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4132391
求助须知:如何正确求助?哪些是违规求助? 3669092
关于积分的说明 11603360
捐赠科研通 3366159
什么是DOI,文献DOI怎么找? 1849371
邀请新用户注册赠送积分活动 913015
科研通“疑难数据库(出版商)”最低求助积分说明 828396